AFFDL-TR-79-3032
Volume II

ADA0 06558

THE USAF STABIITTY AND CONTROL DIGITAL DATCOM
 Volume II, Implementation of Datcom Methods

20000727235

MCDONNELL DOUGLAS ASTRONAUTICS COMPPANY - ST. LOUIS DIVISION ST. LOUIS, MISSOURI 63166

APRIL 1979
Reproduced From
Best Available Copy

TECHNICAL REPORT AFFDL.TR- 79-3032. VOLUME II Final Report for Period August 1977 - November 1978

Approved for public releese;distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY

AIR FORCEE WRIGHT AERONAUTICAL LABORATORIFS AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

$$
80 \% \quad 038
$$

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related sovernment nrocurement operation, the United States Govermment thereby incurs no resporsibility nor any obligation whatsoever; and the fact that the government may have formulated, fumished, or in any way supplied the said dravings, specifications, or other data, is not to be regarded by impliation or otherwise as in any manner licensing the holder or ary other person or corporation, or conveying any rights or permission to mcrufacture, use, or seil any patented invention that may in any way be related thereto.

This report has been revieved by the Office of Public Affairs (ASD/PA) ana is releasable to the National Technical Information Semvice (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This techrioal report has been reviewed and is afproved for publication.

FOR THE COMMANDER

If your address has chonged, if you wish to be removed from our mariling list, op if the addresses is nc longer' employed by your organization please notify APWAL/PIGC, W-:APB, OB , 45433 to help us maintain a ciarvent mailing list.

Copies of this report should not be returned voless return is requixed by security oonsideratione, contractual obligations, or notioe on a specific docurant.

program capabilities, input and output characteristics, and example problems. Volume II describes program implementation of Datcom methods., Volume III discusses a separate plot module for Digital Datcom.

The program is written in ANSI Fortran IV. The primary deviations from standard Fortran are Namelist input and certain statements requirer jy the CDC compilers. Core requirements have been minimized by data packing and the use of overlays.

User oriented features of the program include mindinized input requirements, input error analysis, and various options for application flexioflity.
secunaty Clasmpicatiom of Pmis oacerwnem Dere fintored

This report, "The USAF Stability and Control Digital Datcom," describes the computer program that calculates static stability, high lift and control, and dynamic derivative characteristics using the methods contained in Sections 4 through 7 of the USAF Stability and Control Datcom (revised April 1976). The report consists of the following three volumes:

- Volume I,' Users Manual
- Volume II, Inplementation of Datcom Methods
- Volume III, Plot Module

A complete listing of the program is provided as a microfiche supplement.
This work was performed by the McDonnell Douglas Astronautics Company, Box 516, St. Louis; MO 63166, under contract number F33615-77-C-3073 with the United States Air Force Systems Command, Wright-Patterson Air Force Base, CH. The subject contract was initiated undrr Air Force Flight Dynamics Laboratory Froject 8213 , Task 82190115 on 15 August 1977 and was effectively concluded in November 1978. This report supersedes AFFDL TR-73-23 produced under contract F33615-72-C-1067, which automated Sections 4 and 5 of the USAF Stability and Control Datcom; AFFDL TR-74-68 produced under contract F33615-73-C-3058 which extended the program to include Datcom Sections 6 and 7 and a trim option; and AFFDL-TR-76-45 that incorporated Datcom revisions and user oriented options under contract F33615-75-C-3043. The recent activity generated a plot module, updated methods to incorporate the 1976 Datcom revisions, and provide adifitional user oriented features. These contracts, in total, reflect a systematic approach to Datcon automation which commenced in February 1972. Mr. J. E. Jenkins, AFFDL FGC, was the Air Force Project Engineer for the provious three contracts and Mr. B. F. Niehaus acted in this capacity for the current contract. The authors wish to thank Mr. Niehaus for his assistance, particularly in the areas of computer program formulation, implementation, and verification. A list of the Digital Datcom Principal Investigators and individuals who made gignificant contributions to the development of this program is provided on the following page.

Requests for copies of the computer program should be directed to the Air Force Filght Dynamics Laboratory (FGC). Copies of this report can be obtained from the National Technical Information Service (NTIS).

This report was submitted in April 1979.

PRINCIPLE INVESTIGATORS
J. E. Williams (1:75 - Present)
S. C. Murray (1973-1975)
G. J. Mehlick (1972-1973)
T. B. Sellers . (1972-1972)

CONTKIBUTCRS
E. W. Ellison (Datcom Methods Interpretation)
R. D. Finck
G. S. Washburn
(Program Strừture and Coding)

TABLE OF CONTENTS

Section Title Page

1. Introduction 1
2. Program Organization 35
3. Equations for Geometric Parameters 37
4. Incorporation of Methods 67
5. System Resource Requirements 127
6. Program Conversion Modifications 109
7. Program Deck Description 111
Reference's 155

LIST OF ILLUSTRATIONS

Figure Title Page
Overlay Program Structure 36
2 Planform Nomenclature 38
3 Sweep Angle Nomenclature 40
Exposed Mean Aerodynamic Chord Nomenclature. 42
5 426
Special Wing Pitching Moment Geometry 43
Supersonic Nonstraight Wing Planform 44
$\left(\Lambda_{L_{0}}<\Lambda_{L_{I}}\right)$Supersonic Nonstraight Wing Planform48
$\left.u_{L_{0}}>\Lambda_{L_{\text {L }}^{I}}\right)$
Equivalent Dihedral Angle Nomenclature 48
Vertical Tail Geometry 45
Supersonic and Hypersonic Body Geometry 51
General Synthesis Nomenclature 52
Downwash Nomenclature 54
Definition Sketch for Propeller Power Effect Calculations 57
Geometry for Determining Immersed Wing Parameters 58
Geometry for Determining Immersed Wing Parameters (Continued) 59
Geometry for Determining Immersed Wing Parameters (Concluded) 60
Definition Sketch for Jet Power Calculations 61
Ground Effect Wing and Tail Heights 64
Ground Effects Planform Parameter ΔX 65
Airfoil Section Module - Executive Routing 70
Ai'rfoil Section Module - NACA Designation Routine 71
Airfoil Section Module - Section Aerodynamics Routine 72
Airfoil Section Module - Section Maximum Lift :coutine 73
Asymmetric Body Geometry Inputs 94
Potential and Vortex Lift Compunents 94
Correlation of a_{v} 95
. Body Thickness Parameters 95
28 Potential Lift Center of Pressure 96
Table
TitlePage
1 Summary of Digital Datcom Methods 2
2 Subsonic Data By Overlay 31
3 Transonic Data By Overlay 32
4 Supersonic-Hypersonic Data By Overlay 33
5 Airfoil Section Module Routine Description 68
6 Programmed Transonic Second Level Methods Summary 84
7 Digital Datcom Overlay Description 112
8 Frogram Common Decks 134
9 Digital Datcom Routine Description 135
Control Data Blocks 151

SECTION 1

INTRODUCTION

Digital Datcom calculates static stability, high-lift and control device, and dynamic-derivative characteristics using the methods contained in Sections' 4 through 7 of Datcom. The computer program also offers a trim option that computes control deflections and aerodynamic data for vehicle trim.

Even though the development of Digital Datcom was pursued with the sole objective of translating the Datcom methods into an efficient, useroriented computer program, differences between Datcom and Digital Datcom do exist. Such is the primary subject of this volume, Implementation of Datcom Methods, which contains the program formulation for those methods in variance with Datcom nethods: Program implementation information regardirg system resources necessaly to make the program operational are presented in Sections 5 and 6.

Section 6 also lists each of the rnutines and references their appearance in the program listings provided as a microfiche supplement to this volume.

Users shou: d refer to Datcom for the validity and limitations of methods invoived. However, potential users are fore-warned that Datcom drag methods are not recommended for performance. Where more than one Datcom method exists, the sumary in Table 1 indicates which method or methods are employed in Digital Datcom. Tables 2, 3, and 4 define the basic output data in each Mach regime and shows the overlay in which each is computed.

The computer program is written in Fortran IV for the CDC Cyber 175. Through the use of overlay and data packing techaiques, core requirement is 67,000 octal words for execution with the NOS operating system using the FTN compiler. Central processor time for a case executed on the NOS system depends on the type of configuration, number of flight conditions, and program option selected. Usual requirements are on the order of one to two seconds per Mach number:

Direct ail program inquires to AFFDL FGC, Wright-Patterson Air Force Base, Ohio 45433. Phone (513) 255-43i5.
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{array}{\|l\|} \hline \text { DATCOM } \\ \text { SECTION } \end{array}$	$\begin{aligned} & \text { ? } \mathrm{IACH} \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SURROUTINE	REMARKS
Airfoil Section Aercdynamics	Airfoils	$\begin{aligned} & 4.1 .1- \\ & 4.1 .2 \end{aligned}$	SUBSONIC	NDM	50		*User input or calculated by the airfoil section module
c_{0}	Wings	4.1.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	15,16	CALCAO	$\} \begin{aligned} & \text { Experimental data input } \\ & \text { required } \end{aligned}$
$c_{L_{\alpha}}$	Wings	4.1.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 1 1 1	15,16 24 27 27	$\begin{aligned} & \text { WTLIFT } \\ & \text { TRS@NI } \end{aligned}$	*Transonic fairing perforned
c_{L}	Wings	4.1.3.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 15,16 \\ 35 \\ 27 \\ 27 \end{gathered}$	LIFTCF WINGCL SUPLNG	*Graphical Method Used
${ }^{C^{\text {MAX }}}$	Wings	4.1.3.4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 2,3 \\ & 1 \\ & N P \\ & N P \end{aligned}$	15,16	CLMXBS CLMXBI	Method 2 high aspect ratio, Method 3 low

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
*Subject of Section 4 of this volume

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{array}{l\|} \hline \text { DATCOM } \\ \text { SECTION } \end{array}$	MACH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$c_{\text {m }}$	Wings	4.1.4.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NDM } \\ & \text { NNM } \\ & \text { NDM } \end{aligned}$	31,33	CMALPH	.
${ }^{\text {c }}{ }_{\alpha}$	Wings	4.1.4.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\left\lvert\, \begin{gathered} 31,33 \\ 25 \\ 27 \\ 27 \end{gathered}\right.$	CMALPH TRANCM SUPLNG SUPLNG	*
C_{m}	Wings	4.1.4.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	31,33	CMALPH	*Straight-tapered low aspect ratio *Compute aerodynamic center
$C_{D_{0}}$	Wi.gs	4.1.5.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 3,5 \\ 24 \\ 18 \\ 18 \end{array}$	CDRAG TRSANI SUPDRG	
$C_{\text {D }}$	Wings	4.1.5.2	SUBSONIC TRAMSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 3,5 \\ 35 \\ 18 \\ 18 \end{array}$	$\begin{aligned} & \text { CDRAG } \\ & \text { WINGCL } \\ & \text { SUPDRG } \\ & \text { SUPDRG } \end{aligned}$	*

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume
Table 1 SUMMARY OF DIGIIAL DATCOM METHODS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { AERODYNAMIC } \\
& \text { PARAMETER }
\end{aligned}
$$ \& CONF IGURATION \& DATCOM SECTION \& MACH
REGIME \& METIOD NUMBER \& OVERLAY \& SUBROUTINE \& REMARKS

\hline C_{L} \& Eodies \& 4.2.1.1

$:$ \& SUBSONIC tRANSONIC SUPERSONIC hrpersonic \& \[
$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
6 \\
6 \\
1 \\
26
\end{array}
$$
\] \& BDDYRT BGOYRT SUPBDD HYPBDO \& *Faired between subsonic and supersonic

\hline C_{L}. \& Bodies \& 4.2.1.2 \& SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC \& \[
$$
\begin{gathered}
1 \\
N M \\
2 \\
3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
6 \\
19 \\
26
\end{gathered}
$$

\] \& | BDOYRT |
| :--- |
| SUPBOD |
| HYPBDD | \& . -

\hline c_{L} \& Body Asymetric \& 4.2.1.3 \& SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC \& $$
\begin{gathered}
2 \\
\text { NDM } \\
\text { NOM } \\
\text { NDH }
\end{gathered}
$$ \& 4 \& 8DDOPT \& *

\hline $$
i_{m_{a}}
$$ \& Bodies \& 4.2.2.1 \& SU6SONIC TRANSOMIC SUPERSONIC HYPERSONIC \& \[

$$
\begin{aligned}
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
6 \\
6 \\
19 \\
25
\end{array}
$$
\] \& BGOYRT 30GYh, SUPBDD HYPBAD \& Faired Between Subscnic and Supersonic

\hline C_{m} \& Bodies \& 4.2.2.2 \& SUBSOMIC TRANSONIC SUPERSONIC HYPERSONIC \& \[
$$
\begin{gathered}
1 \\
\text { NDM } \\
1 \\
1
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
6 \\
19 \\
26
\end{array}
$$

\] \& | BDDYRT |
| :--- |
| SUPBDD |
| HYPBDD | \& -

\hline
\end{tabular}

NOH-NO DATCOM METHOD NP-NOT PROGRAMMED
.- . Subject of Section 4 of this volume
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CORF IGURATION	DATCOM SCCTION	MACH REGIME	METHCD NUMBER	OVERLAY	SUBROUT INE	REMARKS
$\mathrm{C}_{\mathrm{m}} \mathbf{0}$, C_{m}	${ }^{\circ}$ ody Asymmetric	4.2.2.3	SUBSONIC IRANSONIC SUPERSONIC hYPLRSONIC	NDM NDM NDM NDM	4	BODOPT	*
${ }^{C} \mathrm{C}_{0}$	Bodies	4.2.3.1	SUOSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & i \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 19 \\ 26 \end{array}$	BODYRT BOUYRT SUPBOD HYPBDD	.
C_{0}	Bodies	4.2.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 19 \\ 26 \end{array}$	BODYRT B \quad DYRT SUPBDD HYPBDD	Excludes Elliptical Cross Section Excludes Spherically-Blunted Ogive Method
$C_{D}=C_{0}$	Body Asyminetric	-	SUBSONIC IRANISONIC SUPERSONIC HYPERSONIC	NDM NDM NOM NDM	4	BПDØPT	*
a_{0}	Wing-Body Asymmetric	4.3.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDH NDM NDM NOM		-	

NDM-NO - ATTCOM METHOD NOT PRCGRAMMED
$*$ Subject of Section 4 of this volume
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{aligned} & \text { AERODYNAMIC } \\ & \text { PARAMETER } \end{aligned}$	CONF IGURATION	$\begin{array}{\|l\|} \hline \text { DATCOM } \\ \text { SECTION } \\ \hline \end{array}$	$\begin{aligned} & \text { MACH } \\ & \text { RLGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTITE	REMARKS
$C_{L_{a}}$	Wing-Body	4.3.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1,2 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{array}{r} 7 \\ 25 \\ 20 \\ 20 \end{array}$	WBLIFT WBTRAN SUPWB SUPWB	Method 1 Low AR, Method 2 Hi AR Uses Supersonic Method 1
C_{L} -	Wing-Body	4.3.1.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ 1 \end{gathered}$	$\begin{array}{r} 7 \\ 35 \\ 7 \\ 7 \end{array}$	WBLIFT - WBCLB WELIFT WBLIFT	Linear Slope If No Exper. Data Uses Subsonic Method 1 Uses Subsonic Method 1
${ }^{C_{L_{\text {MAX }}}}$	Wing-Body	4.3.1.4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 2 \\ \text { NDM } \\ \frac{1}{N D M} \end{gathered}$	$\begin{array}{r} 7 \\ 20 \end{array}$	WBLIFT SUPWB	\cdots
$C_{m_{0}}$	Wing-Body	4.3.2.1	SUBSONIC TRANSONIC SUPERSCVIC HYPERSONIC	NDM NDM NDM NOM	-		
C_{m}	Wing-Body	4.3.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	WBCM TRANCM SUPWB SUPWB	Uses Supersonic Method

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCUM METHODS

$\begin{aligned} & \text { AERODYNAMIC } \\ & \text { PARAMETER } \end{aligned}$	CONFIGURATION	DATCOM SEECTION	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUPABER	OVCRLAY	SUBROUTINE	REMARKS
C_{m}.	Wing-Body	4.3.2.3	SUBSONIC transonic SUPERSONIC HYPERSONIC	NDM NDM NOM NDM	7	WBCM	See Section 4 for formulatio.i of $\left(X_{\mathrm{ac}} / \mathrm{c}\right)_{W B}$
C_{m}, C_{m}	Wing-Body Asymmetric	4.3.2.4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NOM NOM NDM	.		
C_{D}	Wing-Body	4.3.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 7 \\ 7,24 \\ 20 \\ 20 \end{gathered}$	WBDRAG WBCDL SUPWB SUPWB	Uses Supersonic Method
$C_{\text {D }}$	Wing-Body	4.3.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 7 \\ 7,24 \\ 20 \\ 20 \end{gathered}$	WBDRAG WBCDL SUPWB SUPWB	Uses Supersonic Method
$\hat{\partial r} \quad \partial \alpha, q / q_{\infty}$	Wing Flow Fields	4.4.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ 1 \\ 2 \\ \text { NDM } \end{gathered}$	$\begin{array}{r} 9 \\ 35 \\ 21 \end{array}$	DWASH, DYPRLS TRAWBT SDWASH ${ }^{2}$ DPRESR	

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
*Subject of Section 4 of this volume
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{array}{\|c\|} \hline \text { AERODYNAMIC } \\ \text { PARAHETER } \\ \hline \end{array}$	CONFIGURATION	$\begin{aligned} & \text { DATCOH } \\ & \text { SECTION } \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$\partial \varepsilon / \partial a$ Canards	Wing Flow Fields	4.4.1	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{gathered} 3 \\ N D M \\ 3 \\ N D M \end{gathered}$	9 21	DWASH SOWASH	
c_{L}	$\begin{aligned} & \text { Wing-8ody- } \\ & \text { Tail } \end{aligned}$	4.5.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,2 \\ & \text { NOM } \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 28 \end{aligned}$		Method 1 for $b_{w} \gg b H$ Linearized about $C_{L}=0$ Method 2 for Canard Config
C_{L}	Wing-BodyTail	4.5.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 28 \\ & 28 \end{aligned}$	WBTAIL CLWBT SUPWBT SUPWBT	Excludes Shock Expansion Method Uses Supersonic Method
$C_{L_{\text {MAX }}}$	Wing-Bodyrail	4.5.1.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & N P \\ & N P \\ & N P \\ & N P \end{aligned}$	\cdot	-	
$C_{\text {ma }}$	Wing-BodyTail	4.5.2.1	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,2 \\ & 1,2 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 28 \\ & 28 \end{aligned}$	WBTAIL TRAWBT SUPWBT SUPWBT	Method 2 for Canard Config Linearized about $C_{h}=0$ Method 2 for Canard Config Uses Supersonic Methods

NOM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{aligned} & \text { ALRODYNAMIC } \\ & \text { PARAMETER } \end{aligned}$	CONF IGURATION	DATCOM SECTION	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMRRKS
C_{m}	Wing-BodyTail	4.5.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM	10	WBTAIL	*Extended Datcom Method
$c_{D_{0}}$	$\begin{aligned} & \text { King-Body- } \\ & \text { Tail. } \end{aligned}$	4.5.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 28 \\ & 28 \end{aligned}$	WBTAIL, VTDRAG WBTCD \emptyset SUPWBT SUPWBT	Untrimmed Untrimmed Uses Supersonic Method
C_{D}	$\begin{aligned} & \text { Wing-Body- } \\ & \text { Tail } \end{aligned}$	4.5.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 28 \\ & 28 \end{aligned}$	WBTAII. CDWBT SUPWBT SUPWBT	$\begin{aligned} & \text { *Same Method All Speeds } \\ & \text { Overlay } 38 \text { for Trim } \end{aligned}$
$\left(\Delta C_{L}\right)^{\text {POWER }}$	A11	4.6 .1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	13,30	PRPWEF, JETPWE	-
$\underset{\text { max }}{\left(\Delta C_{L}\right)_{\text {POWER }}}$	Al1	4.6 .2	SUBSONIC TRARSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & \text { NP } \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$.		

*Subject of Section 4 of this volume
.9
Table 1. SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$\left(\Delta C_{m}\right)_{\text {POWER }}$	All	4.6.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 NDM NDM NDH	13;30	PRPWEF , JETPWE	
$\left(\Delta_{C D}\right)_{\text {POWER }}$	All	4.6 .4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	13,30	PRPWEF, JETPWE	
$\left(\triangle C_{L}\right)_{\text {GROUND }}$	All	4.7.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$1,2$ NDM NOM NDM	11	GRDEFF	See Datcom
$\left(\Delta C_{L_{\text {MAX }}}\right)_{\text {GROU }}$	ND All	4.7 .2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC.	NDM NDM NDM NDM		- -	\cdots
$\left(\triangle C_{m}\right)_{\text {GROUND }}$	A11	4.7 .3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 NDM NDM NDM	11	GRDEFF	- .

NP-NOT PROGRAMMED
NDM-NO DATCOM METHOD
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE		REMARKS
$\left(\triangle_{\text {D }}\right)_{\text {GROUND }}$	All	4.7.4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 2 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	11	GRDEFF	-	
α_{0}	Low Aspect Ratio Wings, Wing-Bodies	4.8.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 NDM NDM NDM	14	LøARWB		-
C^{-}	Low Aspect Ratio Wings, Wing-Bodies	4.8.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\stackrel{1}{\text { NDM }}$ NDM NDM	14	LOARWB		
$C_{A_{0}}$	Low Aspect Ratio Wings, Wing-Bodies	4.8.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NOM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	14	L®ARWB		
C_{A}	Low Aspect Ratio Wings, Wing-Bodies	4.8.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	14	LGARWB		

NP-NOT PROGKAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYMAMIC PARAMETER	CONFIGURATION	$\begin{array}{\|l\|} \hline \text { DATCOM. } \\ \text { SECTION } \end{array}$	$\begin{gathered} \text { MACH } \\ \text { REGIME } \end{gathered}$	$\begin{aligned} & \text { METHOD } \\ & \text { NUMBER } \end{aligned}$	OVERLAY	SUBROUTINE	REMARKS
C_{m}	Low Aspect Ratio Wings, Wing-Bodies	4.8.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM			
${ }^{\text {cm }}$	Low Aspect Ratio Wings, Wing-Bodies	4.8.3.2	SUBSOMIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	14	LOARWB	
$c_{Y_{B}}$	Wings	5.1.1.1	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ 1 \end{gathered}$	17 23 23	$\begin{aligned} & \text { SUBLAT } \\ & \text { SUPLAT } \\ & \text { SUPLAT } \end{aligned}$	Uses Supersonic Method
$c_{Y}{ }^{\circ}$	Wings	5.1.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM			
$C^{\ell_{B}}$	Wings	5.1.2.1	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 17 \\ & 35 \\ & 23 \\ & 23 \end{aligned}$	subiat WINGCL SUPLAT SUPLAT	Uses Supersonic Method

NOM-NO DATCOM METHOD NP-NOT PROGRAMMED
*Subject of Section 4 of this .olume
12
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{aligned} & \text { AERODYNAMIC } \\ & \text { PARANETER } \end{aligned}$	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTIO: } \end{aligned}$	$\begin{gathered} \text { MACH } \\ \text { REGIME } \end{gathered}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$C_{l} @ \alpha$	Wings	5.1.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM	-		See Datcom for details
$C_{n_{B}}$	Wings	5.1.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 17 \\ & 23 \\ & 23 \end{aligned}$	SUBLAT SUPLAT SUPLAT	Uses Supersonic Method
$C_{n} e^{\circ}$	Wings	5.1.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM			
$C^{\text {Y } B}$	Wing-Bodies	5.2.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 23 \\ & 23 \end{aligned}$	SUBLAT SUBLAT SUPLAT SUPLAT	Uses Supersonic Method
C, 0α	Wing-Bodies	5.2.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NP NDM			See Datcom for Details

NP-NOT PROGRAMMED
NOM-NO DATCOM METHOD
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

NDM-NO DATCOM METHOD -NP-NOT PROGRAMMED
*Subject of Section 4 of this volume

14
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	DATCOM SECTION	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$C_{Y}{ }^{\circ} \alpha$	Tail-Bodies	5.3.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NP NDM		-	\}See Datcom for Details
$C_{\ell_{B}}$	Tail-Bodies	5.3.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 17 \\ & 23 \\ & 23 \end{aligned}$	SUBLAT SUPLAT SUPLAT	
$C_{\ell}{ }^{@} \alpha^{\circ}$	Tail-Bodies	5.3.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NOM			
$C_{n_{\beta}}$	Tail-Bodies	5.3.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 17 \\ & 23 \\ & 23 \end{aligned}$	SUBLAT SUPLAT SUPLAT	
$C_{n} @ \alpha$	Tail-Bodies	5.3.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NP NDM		-	\} See Datcom for Details

NP-NOT PROGRAMMED
NDM-NO DATCOM METHOD
Table 1 SUMMAPY OF DIGITAL DATCOM METHODS

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERI AY	-SUBROUTINE	REMARKS
$K_{H_{B}}^{-}$	Low Aspect Ratio Wings, Wing-Bodies	5.5.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	14	LOARWB	.
$K_{n_{\beta}^{\prime}}$	Low Aspect Ratio Wings, Wing-Bodies	5.5.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 NDM NDM NDM	14	LQARWB	-
${ }^{C} Y_{B}$	Wing-BodyTails	5.6.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NOM } \\ 1 \\ \text { NDM } \end{gathered}$	17 23	SUBLAT SUPLAT	- \quad -
$C_{\gamma}{ }^{\circ} \times$	$\begin{aligned} & \text { Wing-Body- } \\ & \text { Tails } \end{aligned}$	5.6.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NP NDM	-		\}See Datcom for details
$C_{\ell_{-\beta}}$	$\begin{aligned} & \text { Wing-Body- } \\ & \text { Tails } \end{aligned}$	5.6.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	17 23	SUBLAT SUPLAT	-

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DAICOM METHODS

ACRODYNAMIC PARAMETER	CONF IGURATIOK	$\begin{array}{\|l\|} \hline \text { DAICOM } \\ \text { SECIION } \\ \hline \end{array}$	MACH REGIME	METIIOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$C_{2} a^{0}$	$\begin{aligned} & \text { Wing-Body- } \\ & \text { Tails } \end{aligned}$	5.6.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM	:		
C_{n}	$\begin{aligned} & \text { Wing-Bodf- } \\ & \text { Tails } \end{aligned}$	5.6.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NOM } \\ 1 \\ \text { NOM } \end{gathered}$	17 23	SUBLAT SUPLAT	
$C_{n}{ }^{\text {a }}$	Wing-8odyjalls	5.6.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSOHIC	NDM NDM NP NDM		-	\} See Datcom for details
${ }_{3}, C_{L_{8}}$	Section characteristics with control devices	6.1.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NOM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	36	LIFTFP	Jet Flaps in "JETFP" overlay 55
$\mathbf{c}_{\mathbf{e}}$	Section characteristics with control devices	6.1.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NOM } \\ \text { NDH } \end{gathered}$	36	LIFTFP	Jet Flaps in "JETFP" overlay 55

NOM-NO DATCOM METHOD NF-NOT PRC:SRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYMAYIC PARMHETER	CONFIGURATION	$\begin{aligned} & \text { DAICOM } \\ & \text { SECIION } \end{aligned}$	MACH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$\varepsilon_{S_{\max }}$	Section characteristics with control devices	-.1.1.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	36	LIFTFP	
Δc_{m}	Section characteristics with control devices	6.1.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	2	37, 55	FLAPCM	Jet Flaps in "JETFP" overlay 55
$C_{\text {c }}$.	Section characteris tics with control devices	6.1.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	37. 55	FLAPCM	Jet Flaps in "JETFP" overlay 55
$\begin{aligned} & c_{m} \text { (near } \\ & c_{2_{\max }} \text {) } \end{aligned}$	Section Characteristics with control. devices	6.1.2.3	SUBSOMIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1 \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	37	FLAPCN \because	-
$c_{n_{1}}$	Section characteristics with control devices	6.1.3.1	SUBSOMIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	36 41.	HINGE SSHING	

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	$\begin{array}{\|l\|} \hline \text { DATCOM } \\ \text { SECTION } \end{array}$	MACH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$c_{h_{\delta}}$	Section characteristics with contrcl.devices	5.1.3.2	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { HDM } \\ 1 \\ H D M \end{gathered}$	36 41	HINGE SSHING	
$\left(c_{h_{f}}\right)_{\delta_{t}}$	Section characteristics with control devices	6.1.3.3	subsonic transonic SUPERSONIC HYPERSONIC	$\begin{aligned} & \text { NP } \\ & \text { NOM } \\ & \text { NOM } \\ & \text { NOM } \end{aligned}$			
$\left(c_{n_{t}}\right)_{s f}$	Section characteristics with control devices	6.1.3.4	SURSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & \text { NP } \\ & \text { NOM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$			
C_{L}	Flapped Planform	6.1.4.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { NOM } \end{gathered}$	$\left\lvert\, \begin{gathered} 36,55 \\ 36 \\ 41 \end{gathered}\right.$	LIFTFP LIFTFP SSSYM	Jet Flaps in "JETFP" overlay 55
$c_{L_{a}}$	Flapped Planform	6.1.4.2	SUBSONIC transonic SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \begin{array}{c} 1 \\ \text { NDM } \\ \text { NDM } \end{array} \end{gathered}$	41, 55	SSSYM	Jet Flaps in "JETFP" overlay 55

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{gathered} \text { AERODYNAMIC } \\ \text { PARAMETER } \end{gathered}$	CONF IGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	$\begin{gathered} \text { MACH } \\ \text { REGIME } \end{gathered}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$C_{L_{\text {MAX }}}$	Flapped planform	6.1.4.3	SUBSONIC tRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NOM } \\ \text { NDM } \\ \text { NOM } \end{gathered}$	36, 55	LIFTFP	Jet Flaps in "JETFP" overlay 55
${ }^{\Delta} C_{m}$	Flapped planform	6.1.5.1	SUBSONIC TRANSONIC SUPCRSONIC HYPERSONIC	$\begin{gathered} 2 \\ 1 \\ 1 \\ \text { NDM } \end{gathered}$	$\begin{gathered} 37,55 \\ 37 \\ 41 \end{gathered}$	FLAFCM FLAPCM SSSYM	Jet Flaps in "JETFP" overlay 55
$C_{m_{a}}$	Flapped Planform	6.1.5.2	SUBSONIC TRANSONIC SUPERSONIC IYPERSONIC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 37,55 \\ 37 \\ 37 \\ 37 \end{gathered}$	FLAPCM FLAPCM FLAPCM FLAPCM	Jet Flaps in "JETFP" overlay 55
$c_{h_{a}}$	Flapped Planform	6,1.6.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	36 41	HINGE SSHING	
$C_{h_{\delta}}$	Flapped Plan form	6.1.6.2	SUESONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	36 41	HINGE SSHING	.

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{aligned} & \text { AERODYNAMIC } \\ & \text { PAKAMETER } \end{aligned}$	CGNFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	MiCH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
-		-					
Hypersonic Control Effectiveness	Tail-Bodies	6.3.1	SUBSONIC TRANSONIC SUPCRSONIC HYPERSONIC	NDM NOM NOM 1	42	HYPFLP	
TransverseJet Control Effectiveness	All	6.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NOM NDM 1			-
					47	TRANJT	
Inertial Controls		6.3 .3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM NDM			
	\therefore						
Aerodynamically Boosted Tabs	Tabbed Planform	6.3.4	SUBSONIC TRANSONIC SIUPRERSONIC HYPERSONIC				Below Mach 0.9 (See Datcom)
				1	36	CTABS	
				NOM			
				NDM			
$C_{L_{q}}$	Wings	7.1.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC			SUBPAW	-
				1	43	SUBPAW	Uses subsonic method
				1	43	SUPPAW	
				NDM			

NDM-NO OATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

NOM-NO DATCOM METHOD NP-NOT PROGRAMMED

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	DATCOM SECTION	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$c_{m_{q}}$	Bodies	7.2.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1111	$\begin{aligned} & 46 \\ & 46 \\ & 46 \\ & 46 \end{aligned}$	DYNBDD DYNBOD DYNBDD DYNBØD	Uses subsonic method
$C_{L_{\alpha}}$	Bodies	7.2.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1111	$\begin{aligned} & 46 \\ & 46 \\ & 46 \\ & 46 \end{aligned}$	DYNBDD DYNBDD DYNBDD DYNBDD	Uses subsonic method
$C_{m_{\alpha}}$	Bodies	7.2.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1111	$\begin{aligned} & 46 \\ & 46 \\ & 46 \\ & 46 \end{aligned}$	DYNBDD DYNBøD DYNBDD DYNBØD	Uses subsonic nethod
$c_{L_{q}}$	Wing-Bodies	7.3.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { NOM } \end{gathered}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	DNPAWE DNAPWB DNPAWB	Uses subscnic method
$c_{m_{q}}$	Wing-Bodies	7.3.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	11NDM	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	DNPAWB DNPAWB DNPAWB	Uses subsonic method

NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARMMETER	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	MACH REGIME	$\begin{aligned} & \text { METHOD } \\ & \text { MUMBER } \end{aligned}$	OVERLAY	SUBROUTINE	REMARKS
$c_{Y_{p}}$	Wing-Bodies	7.3.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	45 45	SUBRYW SUPRYW	Uses wing method (7.1.2.1) Uses wing method (7.1.2.1)
$c_{\ell_{p}}$	Wing-Bodies	7.3.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ 1 \\ \text { NDM } \end{gathered}$	45 45	SUBRYW SUPRYW	Uses wing method (7.1.2.2) Uses wing method (7.1.2.2)
$c_{n_{p}}$	Wing-Bodies	7.3.2.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { HDM } \\ 1 \\ \text { NDM } \end{gathered}$	45 45	SUBRYW SUPRYW	Uses wing method (7.1.2.3) Uses wing method (7.1.2.3)
$c_{\gamma_{r}}$	Wing-Bodies	7.3.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NMM } \end{aligned}$			
${ }^{c_{e}} \mathbf{r}$	Wing-Bodies	7.3.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	45	SUBRYW	Uses wing method (7.1, 3.2)

NOM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DAICOM METHODS

$\begin{aligned} & \text { AERODYNSMIC } \\ & \text { PAR. }{ }^{\text {METER }} \\ & \hline \end{aligned}$	CONFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { REGIME } \end{aligned}$	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
$C^{n_{r}}$	Wing-Bodies	7.3.3.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\cdot 1$ NDM NDM NDM	45	SUERYW	Uses wing method (7.1.3.3)
$C_{L}{ }_{\dot{\alpha}}$	Wing-Bodies	7.3.4.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { NDM } \end{gathered}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & \text { DNPAWB } \\ & \text { DNPAWB } \\ & \text { DNPAWB } \end{aligned}$	Uses subsonic method
$C_{m_{\dot{\alpha}}}$	Wing-Bodies	7.3.4.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { NDM } \end{gathered}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	DNPAWB DNPAWB DNPAWB	Uses subsonic method
$c_{L_{q}}$	Wing-Body: Tails	7.4.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,2 \\ & \text { NDM } \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	DNPWBT DNPWBT DNPWBT	All use subsonic methods. §Method 2 for canard config.
$c_{m_{q}}$	Wing-BodyTails	7.4.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,2 \\ & \text { NDM } \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	DNPWBT DNPWBT DNPWBT	(All use subsonic methods. (Method 2 for canard config.

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED
Table 1 SUMMARY OF DIGITAL DATCOM METHODS

$\begin{aligned} & \text { AERODYNAMIC } \\ & \text { PARAMETER } \end{aligned}$	COMFIGURATION	$\begin{aligned} & \text { DATCOM } \\ & \text { SECTION } \end{aligned}$	MACH REGINE	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
${ }^{c_{Y_{p}}}$	Wing-BodyTails	7:4.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{gathered} 2 \\ \text { NDM } \\ \text { NDM } \\ \text { NDM } \end{gathered}$	46	SUBWBT	.
$C_{\ell_{p}}$	Wing-BodyTails	7.4.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1 NDM NDM NDM	46	SUBWBT	.
$c_{n_{p}}$	$\left\{\begin{array}{l} \text { Wing-Body- } \\ \text { Tails } \end{array}\right.$	7.4.2.3	SUḂSOHIC TRANSONIC SUPERSONIC HYPERSONIC	$\begin{aligned} & こ \\ & \text { NDM } \\ & \text { NDM } \\ & \text { NDM } \end{aligned}$	46	SUBWBT	-
${ }^{c_{Y_{r}}}$	Wing-BodyTails	7.4.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NP NDM NDM NDM	\cdot	-	
$C^{\ell}{ }_{r}$	Wing-GodyTails	7.4.3.2	SUBSONIC TRANSONIC. SUPERSONIC HYPERSONIC	1 NOM NDM NDM	46	SUBWBT	-

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED

	1												
	v^{7}	$\stackrel{\square}{8}$	9		9	9					9		
	5^{-}		8	\％	8	9	$\stackrel{\circ}{6}$	4	\％	\bigcirc	8		
	$\sum_{3}^{4}{ }_{5}$		8	\％	4	\％	8	9	8	\％	4		
	㟔 ${ }_{\text {c }}$		8	9	\％	\％	$\%$	$\stackrel{\square}{*}$	4	\ddagger	$\%$		
	$\frac{3}{\overline{0}}$		8	9	9	9	4	8	\because	9	4		
		\％	\％	Ψ	8	\pm	8	\％	\％	9	¢		
	公 2	9	\％	$\%$	$\%$	$\mathscr{8}$	$\%$	9	8	8	9		
	${ }^{5}$	$\stackrel{\square}{\square}$	\％	9	$\stackrel{\infty}{1}$	9	9	$\stackrel{\square}{\square}$	\％	8	9		
	0^{5}	8	\％	9	4	8	\％	$\%$	9	$\stackrel{\square}{8}$	8		
	ज	$\pm \infty$	ミ	＝	＝	ミ \pm	－	－	＝	＝	$=$	8^{3}	
	岂 $\underbrace{\sim}$	$\cdots \infty$	Г	＝	三	$\because \pm$	ニ	ミ	ミ	ニ	$=$	8^{3}	
		$\rightarrow \infty$	＝	ニ	ニ	$\pm \pm$	－	$=$	＝	三	$=$	$y^{\frac{3}{3}}$	
	St ${ }^{\text {E }}$	＋ 0	m	M	∞	ミ	\cdots	\sim	읃	응	으＝		
	怎 0^{3}	\cdots	요	$\pm \infty$	∞	ミ	\sim	\sim	은	을	요＝	S"	
	\checkmark	＋ 0	\bar{m}	m	∞	ミ \pm	\sim	\cdots	읃	읃	으＝	延号	
	立 2	$\rightarrow \infty$	上	－¢	∞	ㅍ	－	\sim	을	으＝	으＝	¢ ¢ $_{6}$	
		$\cdots \infty$	9	m	∞	三	\sim	\cdots	읃	을	으＝	¢ $\chi^{\text {¢ }}$	
	知 0	$\rightarrow \infty$	¢	\bigcirc	∞	$\overline{\text { E }}$	－	－	을	앙	ㅂㅡㅡㅡㄹ	乐鱼	\cdots－
	3	$\square \infty$	\cdots	\sim	∞	$\underset{\sim}{ \pm}$	\sim	\sim	읃	으＝	을	8	$\frac{8}{5} 0$
			$\begin{aligned} & 3 \\ & \dot{0} \\ & \frac{2}{3} \end{aligned}$				．	虽	¢ ¢ ＋ ¢				

TABLE 3 OVERLAYS DEFINING EACH OF THE BASIC TRANSONIC OUTPUT PARAMETERS

[^0]TABLE 4 OVERLAYS DEFINING EACH OF THE BASIC SUPERSONIC-HYPERSONIC OUTPUT PARAMETERS

1												
5	$\stackrel{\square}{*}$											
$\stackrel{y}{*} 5^{-}$												
$\frac{0}{3}$		\bigcirc	\div		5	\because						
$\frac{x}{3}$		$\stackrel{\sim}{\sim}$	\because		\bigcirc	\sim						
$\frac{\overline{3}}{3_{4}^{2}}$		5	\bigcirc		\because	\because						
$\stackrel{n}{E} \dot{E}$	$\stackrel{1}{*}$	5	\%	$\mathscr{8}$	4	9	\bullet	$\stackrel{\square}{*}$	$\stackrel{\square}{*}$	9		
$\underset{\Delta}{\sum}\left[\begin{array}{c} - \\ 0 \end{array}\right.$	18	\ddagger	\%	8	8	9	$\stackrel{\square}{\bullet}$	$\stackrel{*}{*}$	8	9		
${ }_{*}^{\circ}$	$\stackrel{\square}{8}$	$\mathfrak{2}$	$\stackrel{8}{\otimes}$	$\stackrel{\square}{\square}$	8	9	$\stackrel{8}{8}$	$\stackrel{*}{*}$	9	8		
0°	\mathscr{C}	$\%$	$\stackrel{\square}{*}$	9	\bullet	$\stackrel{\square}{6}$	4	\%	$\stackrel{*}{*}$	\cdots		
	-2	\mathcal{H}	\sim	$\mathcal{\sim}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\mathcal{\sim}$	$\mathcal{\sim}$	\sim	\mathcal{N}	\sum^{2}	
	$\boldsymbol{\sim} \boldsymbol{\sim}$	$\boldsymbol{\sim}$	$\underset{\sim}{\sim}$	\sim	\sim	$\mathfrak{\sim}$	\sim	$\underset{\sim}{\sim}$	$\mathcal{\sim}$	$\boldsymbol{\sim}$	y^{3}	
	운	$\underset{\sim}{\sim}$	$\boldsymbol{\sim}$	$\underset{\sim}{\sim}$	$\mathcal{\sim}$	\mathcal{N}	\mathcal{H}	$\mathcal{\sim}$	$\mathscr{\sim}$	$\mathcal{\sim}$	${ }^{2}$	
	ํ.	\AA	\sim	8	8	\mathcal{L}	. 8	$\stackrel{\sim}{\sim}$	8	$\ddot{\sim}$	χ^{E}	
	O	π	\sim	\mathcal{L}	$\mathscr{\sim}$	L	8	\pm	\mathcal{L}	\otimes	${ }^{3}$	
S	요	\AA	\approx	\mathcal{L}	8	\%	8	Σ	8	\pm	8	
\geqq	が2	\approx	\mathcal{N}	\mathcal{L}	$\stackrel{\sim}{\sim}$	R	\mathcal{L}	8	2	\mathcal{F}	χ^{2}	
	- \%			R							8^{E}	$\frac{8}{6}=$
E	ㅇ.*	\uparrow	$\underset{\sim}{\sim}$	8	8	\mathcal{R}	R	2	\mathcal{L}	2	ك	*
0	은	\AA	N	8	¢	2	8	8	8.	\pm	8	$\frac{8}{8}=$
		$\begin{aligned} & x \\ & \dot{0} \\ & \end{aligned}$			\pm	\pm						

The Digital Datcom program consists of a MAIN progran, EXECUTIVE subroutines, METHOD subroutines and UTILITY subroutines. The organization and interfaces between these program components are shown ir Figure 1. The MAIN program performs executive functions that control and direct all computations; the EXECUTIVE subroutines perform noncomputational tasks, which include input data mauipulation and selection of output formats; UTILITY subroutines perform standard mathematical computations; and METHOD subroutines implement the Datcom stability methods.

FIGURE 1 OVERLAY PROGRAM STRUCTURE

EQUATIOAS FOR GEOMETKIC PARAMETERS

One of the main features of the Digital Datcom program is that a minimum of input data are requised. Minimal inputs require the program to caiculate basic geometric parameters required by the Datcom methods. Equations for pertinent geometric parameters are defined in this section. 3.1 PLANFORM PARAMETERS

The nomenclature used in the equations for calculating theoretical and exposed planform areas, taper ratios and aspect ratios'are shown in Figure 2. Equations for these parameters are presented below for a double delta or cranked planform. Straight-tapered planform parameters are obtained by setting $b^{*}{ }_{0} / 2=0.0, C_{b}=C_{t}, A_{0}=1.0$ in the following equations:

$$
\begin{aligned}
& b_{b} / 2=b / 2-b_{0}^{*} / 2 \\
& b_{b}^{*} / 2=b^{*} / 2-b_{0}^{*} / 2 \\
& r_{b}^{*}=\left(b_{b}^{*} / 2\right) /\left(b_{b} / 2\right) \\
& \lambda_{I}=C_{b} / C_{r} \\
& C_{F}^{*}=C_{I}\left[\lambda_{I}+\left(I-\lambda_{I}\right) r_{b}^{*}\right] . \\
& \lambda_{I}^{*}=c_{b} / C_{c}^{*} \\
& \lambda_{0}^{*}=c_{t} / c_{b} \\
& \lambda_{\omega}^{*}=\lambda_{I}^{*} \lambda_{0}^{*} \\
& \lambda_{w}-C_{t} / C_{r} \\
& s_{I}^{*}=\left(c_{f}^{*}+c_{b}\right) b_{b}^{*} / 2 \\
& s_{I}=\left(c_{r}+c_{b}\right) b_{b} / 2 \\
& s_{0}^{*}=\left(c_{b}+c_{t}\right) b_{0}^{* / 2} \\
& s_{W}^{\oplus}-s_{I}^{\oplus}+s_{0}^{\oplus}
\end{aligned}
$$

FIGURE 2 PLANFORM NOMENCLATURE

$$
\begin{aligned}
& s_{W}=\left(c_{r}+c_{b}\right) b_{b} / 2+s_{0}^{*} \\
& A_{I}^{*}=4\left(b_{b}^{*} / 2\right)^{2} / s_{I}^{*} \\
& A_{0}^{*}=4\left(\left(_{0}^{*} / 2\right)^{2} / s_{0}^{*}\right. \\
& A_{W}^{*}=4\left(b^{*} / 2\right)^{2} / s_{W}^{*} \\
& A_{W}=4(b / 2)^{2} / s_{W}
\end{aligned}
$$

Datcom methods use correlations that are based on wing sweep angles measured at various chordines. The nomenclature used to calculate sweep angles is presented in Figure 3. Sweep angle equations are presented below for a double delta or cranked wing. To obtain straight taper wing sweep angles set C_{0} and $\Lambda_{n_{0}}=0$ in the following equations:

$$
\begin{aligned}
& C_{I}=4\left(1-\lambda *_{P}\right) /\left[A_{I}^{*}\left(1+\lambda_{I}\right)\right] \\
& C_{0}=4\left(1-\lambda *_{0}\right) /\left[A_{0}^{*}\left(1+\lambda *_{0}\right)\right] \\
& A n_{I}=\tan ^{-1}\left[C_{I}(m-n)+\tan A_{I}\right] \\
& A n_{0}=\tan ^{-1}\left[C_{0}(m-n)+\tan A_{0}\right] \\
& \left.\left.\left(A_{n}\right)_{e f f}=\cos ^{-1}\right]\left(S_{I}^{*} \cos A n_{I}+S_{0}^{*} \cos A n_{0}\right) / S^{*}\right]
\end{aligned}
$$

The nomenclature used to calculate the exposed mean aerodynamic chord (MAC) for a double delta or cranked wing is shown in Figure 4. The parameters necessary to define the lateral and longitudinal location of the exposed MAC are included. Equations to calculate and locate the MAC are presented below: To obtain values for a straight-tapered wing set $C_{0}^{*}=0$, $Y_{0}{ }_{0}=0, S_{0}=0$ in the equations below:

$$
\begin{aligned}
& \overline{C_{I}^{*}}=2 C_{I}^{*}\left(1+\lambda_{I}^{\star}+\lambda_{I}^{*}\right) / 3\left(1+\lambda_{I}^{\star}\right) \\
& \overline{C_{0}^{*}}=2 C_{b}\left(1+\lambda_{0}^{\star}+\lambda_{0}^{*} 2\right) / 3\left(1+\lambda_{0}^{\star}\right)
\end{aligned}
$$

FIGURE 3 SWEEP ANGLE NOMENCLATURE

$$
\begin{aligned}
& \bar{C}_{W}^{*}=\left(S_{I}^{*} \vec{C}_{I}^{*}+S_{0}^{*} \bar{C}_{0}^{*}\right) / S^{*} \\
& \bar{Y}_{I}^{*}=\left(b_{b}^{*} / 2\right)\left(1+2 \lambda_{I}^{*}\right) / 3\left(I+\lambda_{I}^{*}\right) \\
& \bar{Y}_{0}^{*}=\left(b_{0}^{*} / 2\right)\left(1+2 \lambda_{0}^{*}\right) / 3\left(1+\lambda_{0}^{*}\right)+b_{b^{\prime}}^{*} 2 \\
& \vec{Y}^{*}=\left(S_{I}^{*} \bar{Y}_{I}^{*}+S_{0}^{*} \bar{Y}_{0}^{*}\right) / S^{*} \\
& X_{r}^{*}=\left[S_{I}^{*} \bar{Y}_{I}^{*} \tan \Lambda o_{I}+S_{0}^{*}\left(b_{b}^{*} / 2 \tan \Lambda o_{I}+\left(\bar{Y}_{0}^{*}-b_{b}^{*} / 2\right) \tan \Lambda o_{0}\right)\right] / S^{*} \\
& \bar{X}^{*}=\bar{C}_{W}^{*} / 2+X_{r}^{*} \\
& \bar{X}_{r}^{*}=\bar{C}_{W}^{*} / 4+X_{r}^{*}
\end{aligned}
$$

The theoretical or reference mean aerodynamic chord is calculated with nomenclature of Figure 5 as follows:

$$
\begin{aligned}
& \bar{C}_{I}=2 C_{r}\left(1+\lambda_{I}+\lambda_{I}^{2}\right) / 3\left(1+\lambda_{I}\right) \\
& \bar{C}_{r}=\left(S_{I} \bar{C}_{I}+S_{0} \bar{C}_{0}\right) / S_{r} \\
& \bar{X}_{r}=\bar{C}_{r} / 4+X_{r}
\end{aligned}
$$

Special geometric parameters are required to calculate wing pitching moments. The nomenclature used to define these parameters is presented in Figure 6. Equations for these parameters are presented below:

$$
\begin{aligned}
& C^{*}=\left(b_{b}^{*} / 2 \tan \Lambda o_{I}+b_{0}^{*} / 2 \tan \Lambda o_{0}\right) / C_{r}^{*} \\
& A_{I}=4\left(b_{b}^{\prime} / 2\right)^{2} / S_{I} \\
& \Delta Y^{\prime}=b_{b}^{*} / 4 \\
& \left(b_{0}^{*} / 2\right)^{\prime}=b_{b}^{*} / 4+b_{0}^{*} / 2
\end{aligned}
$$

FIGURE 4 EXPOSED MEAN AERODYNAMIC CHORD NOMENCLATURE

FIGURE 5 THEORETICAL OR REFERENCE MEAN AERODYNAMIC CHORD NOMENCLATURE

FIGURE 6 SPECIAL. WING PITCHING MOMENT GEOMETRY

FIGURE 7 SUPERSONIC NON-STRAIGHT WING PLANFORM ($\Lambda_{\text {LE }} \ll \Lambda_{\text {LE }}$)

$$
\begin{aligned}
& C_{b}^{\prime}=C_{t}+\left(b_{0}^{*} / 2\right)^{\prime}\left[\frac{C_{b}-C_{t}}{b_{0}^{*} / 2}\right] \\
& \left(S_{0}^{*}\right)^{\prime}=\left(C_{b}^{\prime}+C_{t}\right)\left(b_{0}^{*} / 2\right)^{\prime} \\
& \left(A_{0}\right)^{\prime}=4\left[\left(b_{0}^{*} / 2\right)^{2}\right]^{\prime} /\left(S_{o}^{*}\right)^{\prime} \\
& \left(\lambda_{0}^{*}\right)^{\prime}=C_{t} / C_{t}^{\prime}
\end{aligned}
$$

Supersonic nonstraight wing analyses require the wing to be synthesized from basic wing, glove, and trailing edge extension components as shown on Figure 7. When the leading edge outboard sweep angle is greater than the leading edge inboard sweep angle, an additional geometric parameter, S_{2}, is required and is shown in Figure 8. Equations for calculating geometric parameters for the various wing components as required by the stability methods are presented below:

All Planforms

FIGURE 8 SUPERSONIC NÓN-STRAIGHT WING PLANFORM ($\Lambda_{\text {LE }}^{0} \gg \Lambda_{\text {LE }}$)

Geometric parameters required for horizontal and vertical tail analyses are identical to those for wings. Tail parameters can be calculated by substituting tail geometry for wing geometry in the wing equations. Vertical tail lateral stability, calculations require additional geometry parameters as shown in Figures 9a and 9b., Equations are listed below:

Stralght Tapered Vertical Ta $\ddagger 1$

$$
\begin{aligned}
& c_{v}=c_{r}-\left(c_{r}-c_{t}\right)\left(z_{L i}\right) /\left(b_{v} \cdot 2\right) \\
& x=x_{i}+\left(\bar{X}_{R}\right)-x_{v}-z_{H}\left(\operatorname{Tan} A_{L E_{I}}\right)
\end{aligned}
$$

$$
\frac{\text { Non-Straight Vertical Tail }}{\text { If } Z_{H}>\frac{b}{2}-\frac{0}{2}}
$$

$$
x=x_{H}+\left(\bar{x}_{R}\right)-x_{v}-\left(\frac{b^{v}}{2}-\frac{b_{0}^{*}}{2}\right)\left(\operatorname{TAN} \Lambda_{L E_{I}}\right)-\left(z_{H}+\frac{b^{*}}{2}-\frac{b_{0}}{2}\right) \operatorname{TAV} \Lambda_{L E}
$$

$$
c_{v}=c_{t}+\left(c_{b}-c_{t}\right)\left(\frac{b_{v}}{2}-z_{H}\right) /\left(\frac{b}{2}\right)
$$

$$
\text { If } \mathrm{ZH} \leq \frac{{ }^{\mathrm{b}} \mathrm{v}^{2}}{2}-\frac{\mathrm{b}_{\mathrm{o}}^{*}}{2}
$$

$$
x=x_{H}+\bar{x}_{R}-x_{V}-z_{H}\left(\operatorname{TAN} \Lambda_{L E_{0}}\right)
$$

$$
c_{v}=c_{r}-\left(c_{r}-c_{b}\right)\left(z_{L_{i}}\right) /\left(\frac{b_{v}}{2}-\frac{b_{0}^{*}}{2}\right)
$$

For horizontal lifting surface, an equivalent dihedral is defined as follows:

$$
r_{e_{q}} \frac{r_{1}\left(\frac{b_{1}^{*}}{2}\right)+r_{0}\binom{b_{0}^{*}}{2} r_{0}}{\frac{b^{*}}{2}}
$$

$$
\begin{aligned}
& \text { trailing } \\
& \text { edge } \\
& \text { extension } \\
& \underset{e}{b_{k}^{\star}}=2\left(\frac{b^{\star}}{2}-\frac{b^{\star}}{2}\right) \\
& \text { span } \\
& \text { If } \operatorname{LE}_{0}>\operatorname{lic}_{I} \quad S *_{2}=\left[\frac{b^{\star}}{2}-\frac{b_{0}{ }^{*}}{2}\right] \quad\left(\tan \vdots_{L E}\right) \\
& S_{1}=s_{b w}
\end{aligned}
$$

FIGURE 9 (a) STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

FIGURE 9 (b) NON-STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

FIGURE 10 EQUIVALENT DIHEDRAL ANGLE NOMENCLATURE

3.2 BODY PARAMETERS

Longitudinal stability analyses for bodias in the supersonic and hypersonic speed regimes require the body to be synthesized in nose, afterbody, and tail segment components as defined in Figure 11. Geometry parameters for the various body sagments analyses are defined below:

$$
\begin{aligned}
& \ell_{B}^{\prime}=\ell^{\ell} N+\ell_{A} \\
& \ell_{B T}=\ell_{B}-\ell_{B}^{\prime} \\
& d_{c y l}=\frac{d_{2}+d_{N}}{2} \\
& S_{p}=2 \int_{0}^{L_{B}} r_{x}(d x) \quad \text { Body planform area } \\
& S_{b}=\frac{d_{2}^{2}}{4} \quad \text { Body base area } \\
& x_{c}=\frac{2 \int_{0}^{\ell_{B}} r_{x} x(d x)}{S p} \quad \begin{array}{l}
\text { Distance from nose of body to rentroid of } \\
\text { Planform area }
\end{array} \\
& V_{B}=\int_{0}^{i b} s_{x}(d x) \quad \text { Volume of body } \\
& \text { If } d_{2}>d_{1} \text {, calculate flare angle } \theta_{f}=T A N^{-1}\left[\frac{.5\left(d_{2}-d_{1}\right)}{\ell B I}\right] \\
& \text { If } d_{2}<d_{1} \text {, calculate boattail angle } \theta_{B}-\operatorname{TAN}^{-1}\left[\frac{.5\left(d_{1}-d_{2}\right)}{\ell B T}\right]
\end{aligned}
$$

3.3 GENERAL SYNTHESIS PARMMETERS

Synthesizing and interference nomenclature for longitudinal and lateral stability calculations are defined in Figure 12. The geometric parameters are presented in equation format below:

$$
\begin{aligned}
& \Delta X_{w}-(b / 2-b * / 2) \text { IAN } \Lambda O_{I} \cos \left(a_{1}\right)_{w} \\
& \Delta x_{c g}=X_{c g}-\left(X_{w}+\Delta X_{w}\right) \\
& \left(X_{a c}\right)_{w}-\left(X_{a c} / C_{r}^{\star}\right)_{w} C_{r}^{*} ; \text { where }\left(X_{a c} / C_{r}^{\star}\right) \text { is calculated in wing pitching } \\
& \text { mosment oubroutine }
\end{aligned}
$$

POSSIBLE SUPERSONIC AND HYPERSONIC BODY CONFIGURATIONS

NOTES:
mDSE AND TAIL SEGMENTS MAY BE CONICAL (AS SHOWN) OR OGIVAL
DIAMETERS d_{N}, d_{1}, AND d_{2} ARE COMPUTED FROM LINEAR NTERPOLATION OF

IMPUTS x_{i} VSR

FIGURE 11 SUPERSONIC AND HYPERSONIC BODY GEOMETRY

FIGURE 12 GENERAL SYNTHESIS NOMENCLATURE

$$
\begin{aligned}
& \left(\Delta x_{a c}\right)_{w}=\Delta x_{c g}-\left(X_{a c}\right)_{w} \cos \left(a_{1}\right)_{w} \\
& \Delta X_{H}=(b / 2-b * / 2)_{H} \operatorname{taN} \Lambda o_{I_{H}} \cos \left(\alpha_{i}\right)_{H} \\
& \left(\Delta X_{C g}\right)_{H}=X_{C g}-\left(X_{H}+\Delta X_{H}\right) \\
& z_{H}=z_{H}-\Delta X_{H} \operatorname{TAN}\left(a_{i}\right)_{H} \\
& \left(X_{a c}\right)_{H}=\left(X_{a c} / C_{r}^{\star}\right)_{H} C_{\underset{\sim}{*}}^{\star} \\
& \left(Z_{a c}\right)_{H}=Z_{H}^{*}-\left(X_{a c}\right)_{H} \operatorname{SIN}\left(\alpha_{i}\right)_{H}-Z_{c g} \\
& \Delta\left(X_{a c}\right)_{H}=\left(\Delta X_{c g}\right)_{H}-\left(X_{a c}\right)_{H} \cos \left(\alpha_{i}\right)_{H} \\
& \left(X_{\bar{C} / 4}\right)_{H}=X_{H}-\left(\bar{X}_{r}\right)_{H} \cos \left(\alpha_{1}\right)_{H} \\
& z_{w}^{\prime}=-z_{w}+\left(C_{r} / 4\right) \operatorname{SIN} \alpha_{1} \\
& \ell_{f}=X_{w}+\Delta X_{w}+\left(\frac{b_{0}^{*}}{2}\right) \operatorname{TAN} \Lambda_{L E}+\left(\frac{b_{b}^{*}}{2}\right) \operatorname{TAN} \Lambda_{L E_{I}}+\frac{c_{t}}{2} \\
& i_{p}=z_{v}-x_{c g}+\left(x_{r}\right)_{w}+\frac{\left(\bar{c}_{r}\right)_{v}}{4} \\
& z_{p}=z_{c g}+\left(\bar{Y}_{R}\right)_{v}
\end{aligned}
$$

3.4 DOWNWASH PARAMETERS

Downwash geometric nomenclature is defined in Figure 13. The equations presented below are used primarily in the subsonic speed regime:

$$
\begin{aligned}
z_{H}^{\prime} & =z_{H}-\bar{x}_{r_{H}} \sin (\alpha 1)_{H}-z_{W}+c_{r_{w}} \sin (\alpha 1)_{w} \\
T_{H} & =x_{H}+\bar{x}_{r_{H}} \cos (\alpha 1)_{H}-\left(x_{W}+c_{r_{w}} \cos (\alpha 1)_{w}\right) \\
\Delta L_{H} & =z_{H}^{\prime} \operatorname{TAN}(\alpha 1)_{W} \\
L_{T} & =L_{H}-\Delta_{L_{H}} \\
\Delta h_{H} & =z_{H}^{\prime} / \cos (\alpha 1)_{W}
\end{aligned}
$$

FIGURE 13 DOWNWASH NOMENCLATURE

FIGURE 13 DOWNWASH NOMENCLATURE (CONCLUDED)

$$
\begin{aligned}
& \Delta_{h_{2}}=L_{T} \operatorname{SIN}(\alpha 1)_{W} \\
& h_{H}=\Delta h_{H_{1}}+\Delta h_{H_{2}} \\
& \ell_{2}=L_{T} \cos (\alpha 1)_{w} \\
& r=\operatorname{ARCTAV}\left(h_{H} / \ell_{2}\right) . \\
& \ell_{3}=\left(c_{r}\right)_{w}-\left(X_{r}\right)_{w} \\
& \text { If } b_{\text {eff }} / 2 \leq\left(b / 2-b_{o}^{* / 2}\right)_{w} \\
& c_{t_{e f f}}=c_{r_{w}}-\frac{c_{r}-c_{b}}{b / 2-b_{o}^{\star / 2}} \quad\left(b_{e f f} / 2\right) \\
& E_{e f f}=\left(b_{e f f} / 2\right) T A N \Lambda o_{I}+c_{t_{e f f}} / 4 \\
& { }^{\ell}{ }_{\text {eff }}=\ell_{2}-\left(E_{e f f}-C_{r_{w}}\right) \\
& \text { If } b_{\text {eff }} / 2>\left(b / 2-b_{o}^{* / 2}\right) \\
& c_{t_{e f f}}=c_{b_{w}}=\frac{c_{b}-c_{t}}{b_{0}^{\star / 2}} \quad\left[b_{e f f} / 2-\left(b / 2-b_{0}^{*} / 2\right)\right] \\
& \left.E_{e f f}=\left(b / 2-b_{o}^{*} /\right]\right)_{W} \operatorname{TAN~} \Lambda 0_{I}+\left[b_{e f f} / 2-\left(b / 2-b_{o}^{* / 2}\right)_{w}\right] \operatorname{TAN~} \Lambda o_{o}+c_{t_{e f f}} / 4 \\
& \ell_{e f f}=\ell_{2}-\left(E_{e f f}-C_{r_{w}}\right)
\end{aligned}
$$

3.5 POWER EFFECTS PAZMETERS

Geometric parameters required to calculate propeller and jet power effects are defined in Figures 14 through 18. Power effects are only calculated for longitudinal stability results in the subsonic speed regime.

$$
\begin{aligned}
& \bar{x}_{p}=x_{w}+\bar{x}_{T_{w}} \cos \alpha_{i_{w}}-x_{p}^{\prime} \\
& \bar{z}_{w} \quad=z_{w}-\bar{X}_{T_{w}} \operatorname{SiN} \alpha_{i_{w}} \\
& \alpha_{p}^{\prime}=\alpha_{S C H}+\alpha_{i t}+\varepsilon_{u} ? p \\
& Z_{S}=Z_{T}+\bar{x}_{\rho} \text { TAN } \alpha^{\prime} \rho \\
& z_{h_{t}}=z_{h}-z_{T}+\left[\left(x_{h}+\bar{x}_{T_{h}} \cos \alpha_{i_{h}}-x_{p}\right) \operatorname{TAN} \alpha_{i_{T}}\right] \\
& \ell_{h}=\left|x_{h}+\bar{x}_{h_{h}} \cos \alpha_{i_{h}}\right|-\left|x_{w}+\bar{x}_{T_{w}} \cos \alpha_{i_{h}}\right|
\end{aligned}
$$

FIGURE 14 DEFINITION SKETCH FOR PROPELLER POWER EFFECT CALCULATIONS

$$
\begin{aligned}
c_{i} & =c_{i}-\left[\frac{c_{1}-c_{b}}{b / 2-b_{0}^{*} / 2}\right]\left[\frac{b_{i}}{2}\right] \\
\frac{b_{i}^{*}}{2} & =\frac{b_{i}}{2}-\left[\frac{b}{2}-\frac{b^{*}}{2}\right] \\
s_{i}^{*} & =\left[c_{i}^{*}+c_{i_{i}}\right] \frac{b_{i}^{*}}{2} \\
A_{i}^{*} & =\frac{:\left[\frac{b_{i}^{*}}{2}\right]^{2}}{s_{i}^{*}} \\
\lambda_{i} & =\frac{c_{i}}{c_{i}^{*}} \\
\bar{c}_{i}^{*} & =\frac{2 c_{i}^{*}\left(1+\lambda_{i_{i}}^{*}+\lambda_{1}^{*}\right.}{3\left(1+\lambda_{i}^{*}\right)}
\end{aligned}
$$

FIGURE 15 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS

$$
\text { CASE } 2 \quad \frac{b_{1}}{2} \geq\left(\frac{b}{2}-\frac{b_{0}^{*}}{2}\right)
$$

SINGLE ENGINE

$$
\begin{aligned}
& \frac{b_{0_{j}}^{*}}{2}=\frac{b_{0}^{*}}{2}-\left[\frac{b}{2}-\frac{b_{i}}{2}\right] \\
& \bar{C}_{t}^{*}=\frac{s_{i}^{*} \bar{C}_{i}^{*}+s_{0_{i}}^{*} \bar{C}_{0_{i}}^{*}}{s_{i}^{*}} \\
& c_{i}=c_{b}-\left[\frac{c_{b}-c_{t}}{\frac{b_{0}^{*}}{2}}\right]\left[\frac{b_{0_{i}}^{*}}{2}\right] \\
& \bar{Y}_{0_{i}}^{*}=\frac{\left[\frac{b_{0}^{*}}{2}\right]_{i}\left[1+2 \lambda_{0_{i}}^{*}\right]}{3\left(1+\lambda_{0_{i}}^{*}\right)+\frac{b_{b}^{*}}{2}} \\
& s_{0_{i}}^{*}=\left(c_{b}+c_{t_{i}}\right)\left[\begin{array}{l}
b_{0_{i}}^{*} \\
2
\end{array}\right] \\
& s_{i}^{*}=s_{i}^{*}+s_{0_{i}}^{*} \\
& \bar{Y}_{i}^{*}=\frac{s_{i}^{*} \bar{Y}_{i}^{*}+s_{0_{i}}^{*} \bar{Y}_{0_{i}}^{*}}{s_{i}^{*}} \\
& \lambda_{0_{i}}=\frac{C_{i}}{C_{i}} \\
& \overline{c_{0 i}^{*}}=\frac{2 c_{b}\left(1+\lambda_{0_{i}}^{*}+\left({\lambda_{0}}_{0_{i}}^{*}\right)^{2}\right)}{3\left(1+\lambda_{0_{i}}^{*}\right)} \\
& X_{i}^{*}=\frac{S_{1}^{*} \bar{Y}_{1}^{*} \operatorname{TAN} \wedge_{0_{1}}+S_{0_{i}}^{*}\left(\frac{b_{b}^{*}}{2} \operatorname{TAN} \wedge_{0_{1}}+\left(\bar{Y}_{0_{i}}^{*}-\frac{b_{b}^{*}}{2}\right) \operatorname{TAN} \wedge_{0_{0}}\right)}{S_{i}^{*}} \\
& \bar{X}_{i_{i}}=\frac{\bar{C}_{i}^{*}}{4}+X_{i}^{*}
\end{aligned}
$$

FIGURE 16 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONT'D)

FIGURE 17 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONCLUDED)

$x_{e}=\frac{x_{H}+\left(\bar{x}_{T_{h}}\right)\left(\cos a_{i_{h}}\right)-x_{e}}{\cos \alpha_{i_{1}}}$
$Z_{j}^{\prime}=\left(x_{H}+\left(\bar{x}_{h_{h}}\right) \cos a_{i_{h}}-x_{e}\right) \sin a_{i_{1}}+\left(z_{i H}-z_{T}\right) \cos a_{i}$
$X_{j}^{\prime}=4.6 R_{j}$
$x_{n}=x_{j}+x_{j}$

FIGURE 18 DEFINITION SKETCH FOR JET POWER CALCULATIONS
3.6 GRUUND EFFECTS PARAMETERS

Ground effects are only calculated for longitudinal stability results in the subsonic speed regime. Lifting surface haights that are required by the Datcom ground effect analyses are defined in Figure 19 and are presented in equation format as follows:

Equations for Calculating ho. $156 / 2$

IF $r_{i}=0$ AND (b 2$) r_{0} \leqq 0.25(0 / 2)$
IF $\mathrm{r}_{\mathrm{i}}=0$ AND (C. $2 \mathrm{I}_{\mathrm{r}_{0}}>0.25(0.2)$
IF $\mathrm{r}_{\mathrm{i}} \neq 0$ AND © $27 \mathrm{r}_{\mathrm{B}} \leq 0.25(\mathrm{~b} .2)$
$1 F \mathrm{r}_{i} \neq 0$ ANO $\left(\mathrm{b}^{2)}\right)_{r_{e}}>0.25(\mathrm{~b} \cdot 2)$

$$
\begin{aligned}
& h_{0.750 .2}=M_{0.75 C_{i}}+\Delta \times \operatorname{TAN}\left(a_{i}\right)_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \left|10 / 2 r_{0}-0.25(2 / 2)\right| \operatorname{TAN} \Gamma_{0}+\Delta x \tan \left(a_{j}\right)
\end{aligned}
$$

Equations for Calculatine h

$$
\begin{aligned}
& \left.H=1 / 700_{0} .75_{1}+4.750 .2\right) \\
& \text { IF } r_{i}=0 \text { AMD (b/ } 2 \mathrm{~T}_{0} £ 0.25(\mathrm{co} / 2) \\
& \text { If } r_{i}=0 \text { AMD } \AA / 2 T_{0}>0.25(0 / 2) \\
& \text { IF } \Gamma_{i} \neq 0 \text { and } 0 / 2 Y_{0} \leqq 0.25(0 / 2) \\
& \text { IF } r_{i} \neq 0 \text { ANO } B / 2 r_{0}>0.25(0 / 2)
\end{aligned}
$$

$$
\begin{aligned}
& \left.H_{0.75 G}=H_{G}+2_{W}-0.75 G_{F} \operatorname{TAN}\left(\varepsilon_{i}\right)\right)_{V}
\end{aligned}
$$

$$
\begin{aligned}
& n=n_{0.75 C_{1}}+0.50 \mid(0.2)-\left(10 / 2 r_{0} \mid \text { tan } r_{i}+\right. \\
& 0.50\left|\omega / 2 r_{0}-0.25 \pi .21\right| \text { TAN } r_{0}+0.50 \Delta X \text { TAN (ein }
\end{aligned}
$$

Equations for Calculating H

$$
\begin{aligned}
& \text { IF } r_{i} \neq 0 A M O\left(\bar{y}_{i}\right)=\left|=2-10 / r_{0}\right| \\
& H=\left({ }^{H} \bar{C}_{r} / 4\right) \\
& \text { IF } r_{i} \neq 0 \text { and }\left(\bar{y}_{1} T_{1}\left|-1 / R-1 / 2 r_{0}\right|\right. \\
& N=\left(C_{C_{1}}\right) w+\left|\left(\overline{y_{1}}\right)+0,2 T_{0}-1,2\right| \text { TAM } r_{0}
\end{aligned}
$$

Equations for Calculating H_{H}

$$
\begin{aligned}
& \left(n_{C_{r}}\right)_{d H}=H_{G}+I_{H}-\left(\bar{x}_{i}\right)_{H} \operatorname{TAN}\left(a_{i}\right)_{H}
\end{aligned}
$$

$$
\begin{aligned}
& +\mid\left(\bar{y}_{i}\right)+\left(b .2 Y_{O_{O H}}-(b .2)_{H} \mid \operatorname{TaNr}_{O_{H}}\right.
\end{aligned}
$$

Ground effect methods require calculation of a planform parameter, Δx, in addition to the previously defined ground heights. This parameter is shown in Figure 20.

50. 75 C ,
$=$ HEIGHT OF 3.4 CHORD OF WING ROOT CHORD ABOVE GROUND
$=H_{G}+Z_{W}-0.75 C_{T}$ TAN $\left(\alpha_{i}\right) W$
${ }^{h} C_{r}$ / $=$ HEIGHT OF 1.4 CHORD OF WING ROOT CHORD ABOVE GROUND

ho. $75 \mathrm{~b}^{\prime} 2$ = HEIGHT OF wing AbOVE GROUND AT I/4 CHORD OF WING 75\% SEMLSPAN CHORO
n = AVERAGE hEIGHT ABOVE GROUND OF THE L/4 CHCRD POINT OF WING CHORD AT 75% SEMI-SPAN AND THE $3 / 4$ CHORD POINT OF THE WING ROOT CHORD.
$=0.50\left(h_{0.75} / 2+h_{0.75} C_{1}\right)$
H = height of l/4 CHORD point of wing mean aerodyamic chord above the ground
$H_{H}=$ HEIGHT OF $1 / 4$ CHORO POINT OF HORIZONTAL TAIL MEAN AEROOYYAMIC CHORD ABOVE THE GROUND
FIGURE 19 GROUND EFFECT WING AND TAIL HEIGHTS

Straight Tapered Wing

$$
\Delta X=0.75 C_{\mathrm{r}}-0.75(\mathrm{~b} .2) \operatorname{TAN} \wedge^{*} 25
$$

Cranked or Double Delta Wing

$$
\begin{array}{ll}
\text { IF } b_{0 / 2}^{*}=0.25(\mathrm{~b} / 2) & \Delta X=0.75 c_{\mathrm{T}}-0.75(\mathrm{~b} / 2) \operatorname{TAN} \wedge_{25_{\mathrm{I}}} \\
\text { IF } b_{0 / 2}^{*}>0.25(\mathrm{~b} / 2) & \left.\Delta X=0.75 \mathrm{c}_{\mathrm{T}}-\operatorname{TAN} \wedge_{25_{0}}\left|b_{0}^{*} / 2-0.25(\mathrm{~b} / 2)\right|-\operatorname{TAN} \wedge_{25} \mid(\mathrm{b} / 2)-b_{0}^{*} / 2\right\}
\end{array}
$$

Straight Tapered Wing

Cranked or Double Delta Wing

FIGURE 20 GROUND EFFECTS PLANFORM PARAMETER Δx

SECTION 4

INCORPORATION OF METHODS

This section summarizes those methods which were incorporated into Digital Datcom but were not defined in the Datcom Handbook or involve method interpretation. Though some of the mrhods included are not, in, general, standard Datcom methods, they permit greater flexibility in usirg the program, and provide output for some parameters which can be closely approximated or are difficult to obtain experimentally. All of the methods presented in this section are referenced to Table 1 of Section 1 and the Datcom. Methods, or procedures, not outlined in this section follow the Datcom method and users should consult the Latcom for method limitations and formulation. 4.1 AIRFOIL SECTION AERODYNAMICS

This section describes a procedure that can be used to obtain the geometric and aerodynamic section characteristics of virtually any user defined airfoil section. Its incorporation into Digital Datcom frees the user from the labor of calculating those section parameters that were required inputs, yet allow him the flexibility to alter those parameters for which he has data.

The Airfoil Section Module, will accept the following user inputs:

- The airfoil section designation
- Section upper and lower cartesian coordinates
- Section mean line and thickness distribution

By these three methods, many airfoil sections can be described'and the section characteristiss calculated.

Since the Airfoil Section Module (ASRi) use's the Mach and Reynolds number inputs, they must be defined in namelist FLTCON using MACH and RNNUB. However, the ASM uses the unit Reynolds number and by implication treats a section one foot (or meter) in length.

This module brings together the outstanding features of two separate studies. Kinsey and Bowers (AFFDL-TR-71-87) have'written a program that calculates the airfoil coordinates of select NACA designations, then uses the Weber technique to calculate the section aerodynamic characteristics. Nieldifng of McDonnell Aircraft has written a similar program using the Weber method, then incorporates additional methods to refine the theoretical

TABLE 5 AIRFOIL SECTION MODULE ROUTINE DESCRIPTION

PROGRAM/SUBROUTINE	PURPOSE
M500:2 (OVERLAY 50,0)	MODULE EXECUTIVE PROGRAM
INIZ	Initialize IOM
SECI	READ USER INPLTS
SECO	TRANSFER MODULE OUTPUTS
CSLOPE	CALCULATE VARIABLE SLOPE FOR SUPERSONIC AIRFOILS
XYCORD	CALCULATE AIRFOIL SECTION FROM USER INPUTS
DELY	CALCJLATE DATCOM PARAMETER $\triangle Y$
AIRFOL (OVERLAY (50,1))	MAIN PROGRAM FOR NACA DESIGNATION INPUTS
DECODE	READ USER INPUT NACA DESIGNATION, DECODE
COORDA	CALCULATE 4-DIGIT NACA AIRFOIL
COORD4M	CALCULATE 4-DIGIT (MODIFIED) NACA AIRFOIL
COORO5	CALCULATE 5-DIGIT NACA AIRFOIL
COCRD5M	CALCULATE 5-DIGIT (MODIFIED) NACA AIRFOIL
COORDI	CALCULATE 1-SERIES NACA AIRFOIL
COORD6	CALCULATE G-SERIES NACA AIPFOIL
CORDSP	CALCULATE SUPERSONIC AIRFOIL COORDINATES
SLEa	SIMULTANEDUS LINEAR EQUATION SOLVER
Theory (OVERLAY (50,2)	MAIN PROGRAM FOR AIRFOIL AERODYNAMICS
10EAL	CALCULATE SECTION IOEAL AERODYNAMICS
SLOPE	CALCULATE LIFT AND MOMENT SLOPES
ASmint	NON-LINEAR INTERPOLATION ROUTING
MAXCL (OVERLAY (50,3))	Calculate variabie clmax for section

PURPOSE
MODULE EXECUTIVE PROGRAM
INITIALIZE IOM
READ USER INPLTS
TRANSFER MODULE OUTPUTS

CALCULATE AIRFOIL SECTION FROM USER INPUTS
Calculate datcom parameter ΔY

MEAD USER NPUT NACA DESIGMATION DECODE CALCULATE 4-DIGIT NACA AIRFOIL CALCULATE 4-DIGIT (MODIFIED) NACA AIRFOIL CALCULATE 5-DIGIT NACA AIRFOIL CALCULATE 5-DIGIT (MODIFIED) NACA AIRFOIL CALCULATE I-SERIES NACA AIAFOIL CALCULATE SUPERSONIC AIRFOIL COORDINATES SIMULTANEOUS LINEAR EQUATION SOLVER

MAIN PROGRAM FOR AIRFUIL AEROOYNAMICS CALCULATE SECTION IOEAL AERODYNAMICS CALCULATE LIFT AND MOMENT SLOPES

CALCULATE VARIABLE CLMAX FOR SECTION

predictions. A cross of the two procedures (coordinates of NACA airfoils and viscous correction fron Kinsey and Bowers, and the aerodynamic methods of Nieldling) yields a program that generates fairly accurate results.

The module is incorporated into Digital Datcom as Overlay 50 , and includes three secondary overlay programs. The routines use the $10 M$ arrays for data storage so that core size will be kept to a minimum. Table 5 describes each of the 22 module routines and the logic flow of the module is presented in Figurees 21 through 24.

4.1.1 Weber's Method

The calculation of the pressure distribution over the surface of an airfoil in an incompressible inviscid flow is accomplished by use of the method of singuiarities. Conformal transformations are used as an intermediate step in deriving the methods for determining the distributions of singularities from which the velocity distributions are calculated. The routine inputs are the airfoil coordinates distributed in any fashion, the angle of attack, and the Mach number. The airfoil shape is defined by curve $f i t t i n g ~ t h e ~ i n p u t ~ c o o r d i n a t e s ~ t o ~ o b t a i n ~ t h e ~ a i r f o i l ~ g e o m e t r y ~ a t ~ t h i r t y-t w o ~$ required points, i.e: :

$$
\begin{aligned}
& x=0.5\left(\cos \theta_{v}+1\right) \\
& \theta_{v}=v \pi / 32 \text { for } 0 \leq v \leq 32
\end{aligned}
$$

The chord line is obtained by joining the leading and trailing edges of the airfoil, where the leading edge is defined, as the forward most point so that all points on the airfoil surface have a positive x coordinate.

The airfoil is placed in a uniform stream V_{0} at an angle of attack relative to the chord line. The velocity v_{0} is resolved into components parallel and normal to the chord line.
$v_{x 0}=v_{0} \cos x$
$V_{20}=V_{0} \sin x$
Combining the results for the parallel and normal flows, the velocity distribution equation for a symmetrical airfoll at angle of attack is $V(x, z)=\frac{v_{0}}{\sqrt{1+(d z / d x)^{2}}}\left\{\cos \alpha\left[1+\frac{1}{\pi} \int_{0}^{1} \frac{d z}{d x^{\prime}} \frac{d x^{\prime}}{x-x^{\prime}}\right.\right.$

$$
\left.\pm \sin \alpha \sqrt{\frac{1-x}{x}}\left[1+\frac{1}{\pi} \int_{0}^{1}\left(\frac{d z}{d x^{\prime}}-\frac{2 z\left(x^{\prime}\right)}{1-\left(1-2 x^{\prime}\right)^{2}}\right) \frac{d x^{\prime}}{x-x^{\prime}}\right]\right\}
$$

FIGURE 21 AIRFOIL SECTION MODULE - EXECUTIVE ROUTING

FIGURE 22 AIRFOIL SECTION MODULE - NACA DESIGNATION ROUTINE

FIGURE 23 AIRFOIL SECTION MODULE - SECTION AERODYNAMICS ROUTTINE

FIGURE 24 AIRFOIL SECTION MODULE - SECTION MAXIMUM LIFT ROUTINE

In the Weber Nethod certain combinations of the above terms have been redefined as follows:
$S^{(1)}(x)=\frac{1}{\pi} \int_{0}^{1} \frac{d z}{d x^{\prime}}-\frac{d x^{\prime}}{x-x^{\prime}}$
(Function for Source Distribution in Parallel Flow)
$S^{(2)}(x)=\frac{d z}{d x}$
(Slope of Thickness
Distribution)

These functions are approximated by sums and products of the airfoil ordinates and certain coetficients which are independent of the section shape by

$$
\begin{equation*}
S^{(1)}(x)=\sum_{v=1}^{N-1} s_{v v}^{(1)} z_{v} \quad S^{(2)}(x)=\sum_{v=1}^{N-1} s_{v v}^{(2)} z_{v} \tag{2}
\end{equation*}
$$

$$
\mathrm{s}^{(3)}(\mathrm{x})=\sum_{v=1}^{\mathrm{N}-1} \mathrm{~s}_{v \nu}^{(3)} z_{v}+\mathrm{s}_{\mathrm{Nv}} \quad(3) \sqrt{\frac{\rho}{2 \mathrm{C}}}
$$

The effects of camter on the resulting velocity distribution are obtaired by assuming the camber to be small compared with the chord. This results in the camber effect being accounted for in the parallel flow $V_{x 0}=V_{0} \cos \alpha$ only.

The Vurtex Distribution, $\gamma(X)$, on the chord line which produces a given velocity normal to the chord line and which is zero at the trailing edge is

$$
\frac{\gamma\left(x_{\nu}\right)}{2 V_{x 0}}=\sum_{\nu=1}^{N-1} s_{v \nu}{ }^{(4)} z_{s_{v}}=s^{(4)}\left(x_{v}\right) \text { Camber) }_{\text {(Vortex Distribution due to }}
$$

The total velccity $V_{x}(x, 0)$ on the chord line for an airfoil with camber and incidence is

$$
\begin{aligned}
v_{x}(x, 0)=v_{0} \cos \alpha & {\left[1+s^{(1)}(x) \pm S^{(4)}(x)\right] } \\
& \pm v_{0} \sin \alpha \sqrt{\frac{1-x}{x}}\left[1+s^{(3)}(x)\right]
\end{aligned}
$$

with the + sign being for the upper surface and the - sign for the lower surface.

The resulting velocity distribution at the airfoil surface is computed using

$$
S^{(5)}(x)=\frac{d z s(x)}{d x} \quad \text { (Slope of Camber Line) }
$$

where $\frac{V(x)}{V_{0}}=\frac{\cos \alpha\left[1+3^{(1)}(x) \pm s^{(4)}(x)\right] \pm \sin \alpha \sqrt{\frac{1-x}{x}}\left[i+s^{(3)}(x)\right]}{\sqrt{1+\left[S^{(2)}(x) \pm s^{(5)}(x)\right] 2}}$
which is the complete expression for an arbitrary airfoil at angle of attack in an ideal flow. The $S^{(4)}(X)$ and $S^{(5)}(X)$ terms are cpmputed by approximation. The pressure coefficient is obtained by

$$
\frac{\left\{\cos \alpha\left[1+S^{(1)}(x) \pm s^{(4)}(x)\right] \pm \sin \alpha \sqrt{\frac{1-x}{x}}\left[1+s^{(3)}(x)\right]\right\}^{2}}{1+\left[S^{(2)}(x) \pm s^{(5)}(x)\right]}
$$

The tern $1+s^{(1)}(x) \pm S^{(4)}(x)$ accounts for the vorticles being put into a flow with velocity $\bar{V}_{0}\left(1+s^{(1)}(x)+s^{(4)}(x)\right)$ instead of V_{0}. The term $\left(1+s^{(3)}(x)\right)$ accounts for the differences in the vortex distribution between the thick and thin wing. The term $1 /\left[1+\left\{S^{(2)}(x) \pm\left. S^{(5)}(x)\right|^{2} \mid\right.\right.$ is the correction between velocities on the chord line and on the surface.

4.1.2 Compressibility Correction and Integration

The effects of compressibility are account: for in Weber's Method by the application of compressibility factors to the velocity distribution contributions due to thickness and camber, respectively.

$$
\beta=\sqrt{\left(1-n_{0}^{2}\right)} \quad c_{F_{i}}=1-\frac{\left.11+s^{(1)}\right)^{2}}{1+\left(5^{(2)}\right)^{2}}
$$

The velocity distribution in compressible flo is then given by

$$
\left(\frac{v}{V}\right)^{2}=\frac{\left(\cos \alpha\left[1+\frac{s^{(1)}}{\beta} \pm \frac{s^{(b)}}{\beta}\right] \pm \frac{\sin \alpha}{\beta}\left[1+\frac{s^{(i)}}{\beta}\right] \sqrt{\left.\frac{1-x}{x} \right\rvert\,}\right.}{1+\left[\frac{s^{(2)}}{B}\right]}
$$

The compressible pressure coefficient from the compressible form of bernoulli's equation is

$$
i_{p}=\frac{1}{0 . \ddots_{0}}\left[1\left[1+0 . \because \quad\left[1-\left(\frac{\vdots}{\because}\right)^{2}\right]\right]^{3.5}-1\right\}
$$

The airfoil lift, axial torse and pitching moment are computed trow, the compressible and incompressible solutions in the following manner

$$
\begin{aligned}
& \text { set } l_{x}=i \quad(\because)-i_{i} \quad(\cdots) \\
& \text { 1. } \int_{i}^{\cdots}
\end{aligned}
$$

Therefore trapezoidal rule

Similarly
$C A(X)=\frac{\pi}{\because} \sum_{V=1}^{i-1}\left[\sum_{F_{u}}(\because)^{\prime}\left(S^{(2)}(x)+S^{(5)}(x)\right)-C_{p_{1}}(11)\left(S^{(2)}(x)\right.\right.$.

and

$$
M(: a)=\frac{\pi}{\therefore} \sum_{\nu=1}^{X-1}\left[1_{\lambda}(x-25) \frac{\sin \theta}{2}\right]_{\nu}
$$

4.1.3 Ideal Parameters

The ideal parameters are obtained from thin air toil theory, which in effect means results are obtained for the meanline characteristics in, an incompressible inviscid flow. The ideal angle of at rack is obtained from

$$
\alpha_{i}=\int_{0}^{1} \frac{1-1 x}{\pi[x(1-x)]} / 1 / 2 d x
$$

How ter, at the leading and trailing edges the equation is undefined and increments in the vicinity of the leading and trailing edges must be determined, in addition to the integration over the interior portion of the chur.

$$
\begin{aligned}
& x-i 10 \quad x=.0 \mid i n \quad x \times 1 \\
& \text { * *..13.71 }
\end{aligned}
$$

$$
\begin{aligned}
\Delta \alpha_{i} \mid & =-\left..3739 z_{s}\right|^{x}+\left..04745 \frac{d z}{d x}\right|_{x=1} \\
x & =.9619 \text { to } x=.9619 \\
x & =1.0
\end{aligned}
$$

resulting in

$$
\Delta \alpha_{i}=57.3\left[\begin{array}{rl}
\Delta \alpha_{i}=0 \text { to } \\
x=.0381
\end{array}+\Delta \alpha_{\substack{1 \\
x=.0381 \\
x=.9619}}+\Delta \alpha_{i} \quad \begin{array}{l}
x=.9619 \text { to } \\
\end{array}\right]
$$

The angle of attack for zero lift is obtained in a similar manner

$$
\alpha_{\mathrm{OL}}=-\int_{0}^{1} z_{s}\left[\frac{1}{(1-x) \sqrt{x[1-x]}}\right] d x
$$

with

The total value is given by

The ideal lift coefficient is now simply

$$
c_{l_{1}}=\frac{2 . \pi}{57.3}\left[\alpha_{1}+\alpha_{\mathrm{OL}}\right]
$$

The pitching moment about the quarter chord is.

$$
C_{m_{0}}=\frac{2 \pi}{N} \cdot \sum_{\nu} z_{s} \cos \theta_{\nu}+\frac{\pi}{57.3} \frac{a_{0 L}}{2}
$$

4.1.4 Crest Critical Mach Number

The crest critical Mach number is precisely defined as that free stream Mach number for which local sonic flow is first reached at the airfoil surface crest on the assumption of shock free flow. Its significance is founded on its relation to the drag rise Mach number. Various empirical studies have been aimed at finding the critical pressure ratio at the crest which corresponds to a drag rise in the test data. Nitzberg (NACA KMA9G2U) proposed a critical pressure ratio for drag rise of

$$
\mathrm{P}_{\text {CREST }} / \mathrm{P}_{\text {TUTAL }}=0.5283
$$

which corresponds to a crest Mach number of $M=1.0$. Sinnot (RAS TUM-6407) proposed the ratio

$$
\mathrm{P}_{\text {CKEST }} / \mathrm{P}_{\mathrm{TOTAL}}=0.515
$$

which corresponds to a Mach number at the crest of $M=1.02$ and which correlates better with drag-rise data. Sinnot's value is used in the Airfoil Section Module, thus the crest critical Mach number corresponds to a local flow at Mach 1.02 at the crest rather than sonic conditions. The relationship between the crest pressure and crest critical Mach number is

$$
\mathrm{C}_{\mathrm{P}} \mathrm{CREST}=\frac{0.515\left(1+0.2 \mathrm{~N}_{\mathrm{CC}}^{2}\right)^{3.5}-1}{0.7 \mathrm{FM}_{\mathrm{CC}}^{2}}
$$

where

$$
\begin{aligned}
F & =\left[\beta_{C C}+1 / 2\left(1-\beta_{C C}\right) C_{P_{C R E S T}}\right]^{-1} \\
M_{C C} & =\text { CREST CRITICAI. AIAC: } \\
C_{p_{C R E S T}} & =\text { INCONPRESSIBILE VALUE } \\
\beta_{C C} & =\sqrt{1-I_{C C}^{2}}
\end{aligned}
$$

Kewritten so that ${ }^{M C C}$ is a function of $C_{P_{C R E S T}}$, the relation is approximated by
$M_{C C}=\left[1.023-.9507 C_{P_{C R E S T}}-.414 C_{p} Z_{R E S T}-.1506 C_{p C R E S T}-.0212 C_{p C R E S T}\right]^{1}$

The crest location for each angle of attack is determined by comparing the airfoil surface slope for each x location to tangent μ. The final location is obtained by interpolating between the two given \times locations whose airfoil slopes bracket the tangent a value. The CPCREST value is obtained by interpolation of the Weber incompressible pressure distribution between the two x values surfounding $X_{C R E S T}$. The crest critical lift coefficient is obtained using the' Karinan-Tsien compressibility rule on the $M=0$ integrated Weber lift coefficient.

where, $C L(M)=C_{L}$ for $M=U$.
No specific boundary layer correction is used. However, the Datcom recommends a 5% correction factor co bring the results in line with experimental data, and the yiscous correction of section lift curve slope proposed by Kinsey and Bowers (Appendix B, Volume i) has been incorporated.
4. 2 TRANSONIC WING CL FAIKING, TRANSONIC WING X C_{ac} FAIRING, and TKANSONIC WING $C_{D_{W}}$ FAIRING
Datcom wing methods in the transonic Mach regime calculate aerodynamic parameters only at specific Mach numbers. Data at the requested Mach number is then determined by interpolation. This approach is used for the wing lift curve, slope ($C_{L_{i}}$), wave drag ($C_{D_{i}}$), and aerodynamic center ($X_{a c}$). Nonlinear fairings for each of these parameters are discussed in the following paragraphs.

4.2.1 Transonic Fairings of Wing $C_{L_{\alpha}}$

Wing lift curve slope, C_{L}, is calculated in subroutine $\operatorname{TRS} \emptyset N I$, overlay 24. The same methods are used for the horizontal tail in subroutine TRS $\varnothing \mathrm{NJ}$, also in overlay 24.

Datcom section 4.1 .3 .2 defines the methods for calculation of $C_{L_{\alpha}}$ at five discrete Mach numbers from 0.6 to 1.4. Values at Mach 0.6 and 1.4 use the subsonic and supersonic methods, respectively. The routine used to fair this curve is a modified version of subroutine ASMINT used in the Airfoil Section Moduie, overlay SU. To ensure a smooth continuous interpolation, a curve is constructed by fitting the points by a left-hand parabola joined to a series of cubic curves, and finally a right-hand parabola. This technique yields a function which has continuous derivatives everywhere: The slope of tịe curve at subsonic Macn numbers is obtained by differentiating the equation on Datcom page 4.1.3.2-4y with respect to Mach number. At Mach 1.'4 the slope is found by calculating values at Mach 1.3, 1.4 and 1.5 and assuming a curve of the form:

$$
C_{L}=A+B / B+C / B^{2}
$$

Subsonic methods are used to Mach 0.75 , or $0 .:$ less than the force break Mach nurber ($M_{f b}$), whichever is smaller, and transonic fairings are initiated at that point.

Subroutines TRANWG and TRANHT are used to calculate $C_{L_{a}}$ at Mach 1.3, 1.4 , and 1.5 and return $C_{L_{\alpha}}$ and its slope at Mach 1.4. Subroutines TRSøNI and TRSONJ calculate $C_{L_{i x}}$ using the subsonic equation if the Mach number is less than 0.75 (or $M_{f b}-0.1$), calculate the slope of the subsonic $C_{L_{a}}$ curve at Mach 0.75 , and call the new fairing routine if the Mach number if geezter rhán 0.75.

4.2.2 Transonic Fairing of Wing $C_{D_{W}}$

The wing wave drag, $C_{D_{W}}$, is calculated in subroutines TRS $\emptyset N I$ and $T R S \emptyset N J$, overlay 24 , for the wing and horizontal tail, respectively. The method is given in Datcom section 4.1.5.1.

Digital Datcom performs a linear interpolation of Datcom Figure 4.1.5.129 at fifteen discrete Mach numbers to determine the variation of $C_{D_{W}}$. Nonlinear interpolations of this curve are performed as required at the user defined Mach numbers using the fairing routine developed for wing C_{L}. Two additional constraints were applied to perform this fairing.
a. If the linear slope to the left or right of a given point, except the end points, is less than UNUSED, (10^{-60} on CDC computers), the slope at that point is set to zero:
b. Any computed value less than zero is set to zero.

Within the fairing routine, the number of points in the curve is used to discriminate between a fairing of $C_{D_{W}}$ and $C_{L_{\alpha}}$.

4.2.3 Transonic Fairings of Wing Aerodynamic Center

Aerodynamic center, $X_{a c}$, is calculated in subroutines TRANCM and TRHTCM, overlay 25 , for the wing and horizontal tail, respectively.

Datcom section 4.1 .4 .2 defines the method for calculation of $X_{a c}$ at six discrete Mach numbers from 0.6 to 1.4. Values at 0.6 and 1.4 are determined using the subsonic and supersonic methods, respectively; the remaining four points are obtained from Datcom Figure 4.1.4.2-30 corresponding to $\overline{\mathrm{V}}=-2,-1,0$ and +1 . If the thickness ratio is less than or equal to 7%, these data are interpolated for the aerodynamic center. If the thickness ratio is greater than 7%, the curve is defined using points which are a function of the force break Mach number, $M_{f b}$. An increment to the aerodynamic center is found from Datcom Figure 4.i.4.2-33 and applied at the fifth point $\left(M_{f b}+0.07\right)$ and the resulting curve is then interpolated for the aerodynamic center. The following table sumarizes the interpolation table:

	Using Six Points $t / c<7 \%$
M_{1}	0.60
M_{2}	M for $\bar{V}=-2$
M_{3}	M for $\bar{V}=-1$
M_{4}	M ior $\bar{V}=0$
M_{5}	M for $\bar{V}=+1$
M_{6}	1.40
M_{7}	-
M_{8}	-

Using Eight Points $t / c>7 \%$
0.60
$\left(0.60+M_{f b}\right) / 2$
$M_{f b}$
$M_{f b}+0.03$
$M_{f b}+0.07$
$M_{f b}+0.14$
$M_{\text {for }} \bar{v}=+1$
1.4

The interpolation routine used is similar to the routine used for $C_{L_{\alpha}}$ and $C_{D_{W}}$ (Sections 4.2.1 and 4.2.2).
4.3 TRANSONIC WING C_{L}, TRANSONIC WING C_{D}, TRANSONIC WING BODY-TAIL $C_{D}-$ TRANSONIC WING-BODY-TAIL C_{D} TRANSONIC WING $C_{\ell_{B}}$, and TRANSONIC WINGBODY $^{C_{i}}{ }_{\beta}$
This section describes those methods used to compute the transonic configuration aerodynamics using Second Level Methods, and are summarized in Table 6. Additionally, the partial output is described. 4.3.1 Transonic Wing Lift Coefficient, $C_{\text {L }}$

The wing lift curve versus angle of attack is programmed in subroutine WINGCL. The method described in Datcom section 4.1.3.3 is used as a guide to produce trends and is not construed to be an exact method of solution. Since the method is an approximate one, the following procedure was employed to produce the wing lift characteristics applicable to thin, low aspect ratio wings:

1. The required experimental data inputs by the user are a_{0} (zero lift angle of attack) and α_{*} (the angle of attack where the lift becomes nonlinear).
2. The lift variation is assumed to be linear up to α_{\star}, and nonlinear to ${ }^{\alpha_{1}} C_{\text {(maximum lift angle of attack). }}$

TABLE 6 PROGRAMMED TRAN:SONIC SECOND LEVEL METHODS SUMMARY

DATCOM SECTION	AERODYNAMIC PARAMETER	CONFIGURATION	SUBROLITINE PROGRAMMED	EXPERIMENTAL DATA input reauired	PARTIAL OUTPUT AVAILABLE
4.1.3.3	c_{L}	WINGS	WINGCL	a_{0}, a_{0}	a_{0}, a_{*}
4.1.5.2	${ }^{D_{D}}$	WINGS	WINGCL	C_{L} OR a_{0}, a_{*}	$c_{D_{L}} / C_{L}{ }^{2}$
5.1.2.1	$C_{f_{j}}$	WINGS	WINGCL	c_{L} OR $a_{0}, a_{\text {. }}$	$C_{\ell_{\beta}} / C_{L}$
5.2.2.1	$c_{\ell_{\beta}}$	WING-BODY	WBCLB	C_{L}	C_{1} / C_{L}
4.5.3.2	C_{D}	WING-BODY-TAIL	CDWEr	${ }^{C_{0}}{ }_{\text {WB }}$ $C_{D_{H}}$	(NONE)
		.		$\begin{aligned} & r_{l_{H}} \\ & q / q_{\infty} \end{aligned}$	
				ϵ	
4.5.3.1	$C_{D_{0}}$	WING-800Y-TAIL	WBrco	$C_{D_{O V}} \text { OR } C_{D_{O W B T}}$ ITYPE ITYPE OF GENERAL CONFIGURATION)	M_{0}

[^1]3. The nonlinear lift region is modeled by a mathematical relationship that satisfies the following conditions:

A modified polynomial of the form

$$
y=A+B\left(X-X_{0}\right)+C\left(X-X_{0}\right)^{N}
$$

is utilized to satisfy each of the bouncary conditions and yield a cuive somewhat parabolic in shape. This relationship has provided excellent results in modeling the nonlinear lift range. Derivation of the unknowns A, B, C and N is described in Section 4.3.7.

Two other user options are available from the routine; (a) the user may input only α_{0}, or (b) the user inputs only α_{*}. Since both α_{0} and α_{*} are required to estimate the lift variation by the preceding technique, the subroutine will provide an estimate for the missing parameter from a quadratic expression. Specifically, a quadratic polynomial can be faired through the nonlinear lift region if α is an unknown. Applying the generalized boundary conditions to a polynomial of order two, and solving for α_{*} will yield an estimate for this unknown. Conversely, if α_{0} is not input, it can be determined in a similar manner.

The relationships used are as follows:

1. 'a * not inp'st

2. ∞_{0} not input

If neither α_{0} nor α_{*} are user inputs, no solution is possible, but the program calculated values for $C_{L}, C_{L_{\max }}$ and ${ }^{\alpha} C_{L_{\text {max }}}$ are available as partial output.

4.3.2 Transonic Wing Drag due to Lift, C_{D}

The programmed procedure for computing the ratio $C_{D_{D}} / C_{L}{ }^{2}$ is exactly as described in Datcom section 4.1.5.2. The method does \mathbf{a} three dimensional table lookup for Figure 4.1.5.2-55a (A tan $\left(\Lambda_{L E}\right)=0$) and for Figure 4.1.5.2-55b $\left(A \tan \left(\Lambda_{L E}\right)=3\right)$. Figure 4.1.5.2-55c shows a linear relationship of the dependent variable $(t / c)^{-1 / 3} C_{D_{L}} / C_{L}{ }^{2}$ as a function of the transonic similarity parameter A tan ($\Lambda_{L E}$) for each value of the ratio ($M^{2}-$ 1)/(t/C) ${ }^{2 / 3}$; it was assumed that this linear relationship would hold for all other taper ratios other than 0.50 . Therefore, linear extrapolations on all varibles would be performed if required.

This method was programmed in subroutine WINGCL with the calculation for wing C_{L}. Since C_{L} is required to calculate $C_{D_{L}}$, the calculation of wing C_{L} would enable the calculation of this parameter if C_{L} is not input as experimentai data. The routine will not overwrite experimental data input, and thus the user oriented features are retained.

The ratio $C_{D_{L}} / C_{L}{ }^{2}$ is available from the routine and will be output for user reference if $C_{D_{L}}$ cannot be calculated.

4.3.3 Transonic Wing Roll Derivative, $C_{\ell_{\beta}}$

Like the wing $C_{D_{L}}$ calculation described, the method of Datcom Section 5.1.2.1 requires wing lift to calculate from the relationship $C_{l_{B}} / C_{L}$, equation 5.1.2.1-c. Thus, this method is also programmed in subroutine WINGCL. : The calculated value $f: C_{\ell_{\beta}}$ will not overwrite any experimental
data input. The ratio C_{ℓ} / C_{L} is provided if the calculation for $C_{\ell_{\ell}}$ cannot be completed. No exceptions are taken for che Datcom method. The ratio, C_{i} / C_{L} at Mach numbers 0.6 and 1.4 are obtained by calling the subsonic and supersonic aerodynamic modules.
4.3.4 Transonic Wing-Body Roll Derivative, $C_{\ell_{B}}$

The derivative $C_{\ell_{k}}$ will be calculated by Datcom equation 5.2.2.1-d if the wing-body lift coefficient variation with angle of attack is supplied, or computed as described above. The ratio C_{ℓ} / C_{L} is given as partial output if the lift variation is not sfecified. This method is implemented exactly as described in Datcom and is programmed in subroutine WBCLB. Since $C_{\ell}{ }_{\beta}$. C_{L} at $M_{f b}$ and Mach 1.4 are required input items for this method, they are calculated by calling the appropriate aerodynamic modules.

4.3.5 Transonic Wing-Body-Tail Drag Coefficient, C_{D}

This method is a "method for all speeds" as described in Datcon Section 4.5.3.2, and is incorporated in exactly the same manner as presently programmed for the subsonic solution. This method, as programmed in subroutine CDWBT, require the following experinental data inputs:

1. $C_{D_{W B}}$ vs angle of attack
2. $C_{D_{H}}$ vs angle of attack
3. $\mathrm{C}_{\mathrm{L}_{\mathrm{H}}}$ vs angle of attack
4. q / q_{∞} vs angle of attack
5. \in vs angle of at tack
6. $C_{D_{o V}}$ or $C_{D_{O_{W B T}}}$

If $C_{D_{O V}}$ is not an experimental data input item, the program will calculate it from the estimated $\mathrm{C}_{\mathrm{D}_{\mathrm{O}_{W B T}}}$ calculated as follows:
$C_{D_{O V}}=C_{D_{O W B T}}-C_{D_{O W B}}-C_{D_{O_{H}}}$
No partial output is avallable from this method.
4.3.6 Transonic Wing-Body-Tail Zero Lift Drag Coefficient, $C_{D_{0}}$

This method follows exactly the method of Datcom section 4.5.3.1, and is programmed as subroutine WBTCDO: This routine does not require experimental data input, although experinental data input is an optional feature for this routine.

Utilizing appropiate configuration description parameters the procem computes the drag divergence Mach number, M, from Figure 4.5.3.1-19. The experimental data input allows the user, at his option, to select the type of general configuration to be used in computing Mo. The three options are:

- A - Straight wing designs without area rule.
o B - Swept wing designs without area rule.
o. C Swept wing designs incorporating transonic area rule theory.

The program default options are as follows:
o No wing sweep - General Configuration A
o Swept wing, configuration type not defined - General Config!ration B The general configuration types are defined by the parameter ITYPE, where ITYPE=1 for configuration type A, ITYPE=2 for configuration type B, and ITYPE=3 for type C. In the case of configuration type C, the line for type C, in Figute 4.5.3.1-1 4 , was linearly extrapolated and programmed. All extrapolations in this figure, with the exception of thickness ratio, are assumed to be linear; thickness ratio is extrapolated in a quadracic fashion.

With M_{D} calculated from Figure 4.5.3.1-19, it is necessary to fair the $C_{D_{0}}$ curve across the transonic Mach regime. The following criteria was used to fair the curve:

$$
\begin{aligned}
& \text { 1. } \frac{d C_{D_{0}}}{d M}=0.10 @ M=M_{D} \\
& \text { 2. } C_{D_{0}}=C_{D_{O M}=.7}+.002 \text { OM } M=M_{D} \\
& \text { 3. } \frac{d C_{D_{0}}}{d M}=\frac{C_{D_{0 M}}=7}{.1}-C_{D_{O M}=.6} \quad @ M=.7 \\
& \text { 4. } \frac{d C_{D_{0}}}{d M}=\frac{{ }^{C}{D_{O M}}=1.4-C_{D_{O M=1.1}}}{.3} @ M=1.1
\end{aligned}
$$

A polynomial fairing of the same type as used for the wing nonlinear lift coefficient is used here and has shown acceptable results.

The values of $C_{D_{0}}$ at Mach . 7 and 1.1 for this method are obtained by calling the subsonic and supersonic aerodynamic modules.

4.3.7 Data Fairing Technique

The data fairing technique used for computins the nonlinear lift region of transonic wings and the transonic wing-body-tail zero lift drag córficient was chosen for its powerful features and ease of application.

The general fairing formula is a polynomial whose form is:
$y=A+B\left(X-X_{0}\right)+C\left(X-X_{0}\right)^{N}$
where $A, B ; C$ and N are unknowns. Given the values of y and $d y / d x$ at two points, X_{0} and X_{1}, four simultaneous equations can be witten. These equations solved simultaneously for the four unknowns yield the following results:

$$
\begin{aligned}
& A^{\prime}=y_{0} \\
& B=\frac{d y}{d x} @ x=x_{0} \\
& C=\frac{y_{1}-y_{0}-\left(\frac{d y}{d x}\right)_{0}\left(x_{0}-x_{0}\right)}{\left(x_{1}-x_{0}\right)} \\
& N=\frac{\left[\left(\frac{d y}{d x}\right) x_{1}-\left(\frac{d y}{d x}\right)_{x_{0}}\right]\left(x_{1}-x_{0}\right)}{y_{1}-y_{0}\left(\frac{d y}{d x}\right)_{0}\left(x_{1}-x_{0}\right)}
\end{aligned}
$$

The general equat ion reduces to

$$
y=y_{0}+\left(\frac{d y}{d x}\right)_{0} \quad\left(x-x_{0}\right)+\left[y_{1}=y_{0}-\left(\frac{d y}{d x}\right)_{x_{0}}\left(x_{1}-x_{0}\right)\right]\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{N}
$$

This equation is valid for $X_{0} \leq X \leq X_{1}$ and (dy/dx) $X_{0} \neq(d y / d x) X_{1}$. Neither of these conditions is violated in this application. The range of values of X will always fall between X_{0} and X_{1} because of the program logic, and in the nonlinear lift region the slopes at X_{0} and X_{1} will never te equal. For the transonic wing-bod;-tail $C_{D_{0}}$ versus Mach fairing the Datecom relation $\left(\mathrm{dC}_{\mathrm{D}_{\mathrm{O}}} / \mathrm{dM}\right)=0.10$ at $\mathrm{M}=\mathrm{M}_{\mathrm{D}}$.
4.4 SUBSONIC WING C_{m}, SUBSUNIC AND SUPERSONIC WING AERODYNAMIC CENTER, SUBSONIC WING-BODY C_{m}, and SUBSONIC WING-BODY-TALL C_{m}
The subsonic wing pitching moment variation with angle of attack follows Datcom Method 1 of Section 4.1.4.3, and is programmed in subroutine CMALPH. The method is applicable to those configurations whose wing aspect ratio satisfies the following criteria:

$$
A \leq \frac{6}{\left(1+C_{1}\right) \cos \Lambda L E}
$$

("LOW ASPECT RATIO")

For "high aspect ratio" configurations, the default wing aerodynamic center is either the quarter-chord of the wing mean aerodynamic chord, or the user input value (variable name $X_{A C}$ in the planform section characteristics namelists). This value is used in computing pitching moment for the wing ip to the angle of attack where the wing lift deviates by more than 7. 5% from the linear value; at this point the method is no longer valid.

There are no methods in Datcom or Digital Datcom for supersonic wing pitching moment, though the wing $X_{A C}$ is estimated to be at the wing planform centroid for unswept leading edges, and computed using the method and design charts of Datcom section 4.1.4.2 for other surfaces. These supersonic data are computed in subroutine SUPLNG.

There is no Datcom method for computing the wing-body pitching moment in any Mach regime. Digital Datcom, however, computes the subsonic wing-body pitching moment using the following formulation (programmed in subroutines WBCMO and WBCM):

- Compute ($\mathrm{C}_{\mathrm{m}_{0}}$) wb_{B} from regression formulation of Datrom Section 4.3.2.1, programmed in WBCMO. If the method is not applicable, ($\mathrm{C}_{\mathrm{m}_{0}}$) WB is computed from Method 1.
- Compute the wing-body aerodynamic center from Datcom Section 4.3.2.2 (WBCM), where Equation 4.3.2.2-a is used at all speeds.
- The wing-body C_{m} curve is then computed as

$$
c_{m_{W B}}=c_{m_{O_{W B}}}+c_{m_{C}}+c_{m_{C}}
$$

where $C_{m_{C}}$ is the pitching moment due to lift obtained by integralting the curve of $X_{A C}$ versus C_{L} from $C_{L}=0$ and to C_{L} at the desired angle of attack, and $C_{m_{C}}$ is the pitching moment due to wing-body drag located at $Z_{A C}$.

Subsonic wing-body-tail pitching moment verse angle of attack is computed by Digital Datcom in subroutine WBTAIL, though there is no Datcom method for this parameter. The method formulation used is as follows:

$$
c_{L_{j H}}=c_{L_{j}}-c_{L_{j B T}}
$$

$$
\left(c_{m_{j}}\right)_{W B T}=\left(c_{m_{j}}\right)_{W B}+\left(q / q_{\infty}\right)_{j}\left(c_{m_{o}}\right)_{H}+\frac{\left(x_{a c}-x_{c}\right)_{H}}{\bar{c}_{r}}\left[\left(c_{L_{j}}\right)_{H} \cos (\alpha)_{j}\right.
$$

$$
\left.+\left(C_{D_{j}}\right)_{H}\left(q / q_{\infty}\right)_{j} \sin (\alpha)_{j}\right]+\frac{\left({ }^{7} a c^{-2} c_{g}\right)_{H}}{\bar{c}_{r}}\left[\left(C_{D_{j}}\right)_{H}\left(q / q_{\infty}\right)_{j} \cos (\alpha)_{j}\right.
$$

$$
\left.-\left(c_{L_{j}}\right)_{H} \sin (\alpha)_{j}\right]
$$

4.5 TRANSONIC BODY C_{L} FAIRING AND TRANSONIC BODY C_{m} FAIRING

The transonic $C_{L_{\alpha}}$ and $C_{m_{\alpha}}$ derivatives for the body alone configuracion is interpolated linearly between the subsonic ($M-0.60$) and supersonic $(M=1.40)$ Mach regimes in subroutine BøDYRT.
4.6 SUBSONIC ASYMMETKICAL BODY C_{L}, SUBSONIC ASYMMERICAL BODY $C_{m_{O}}$
C_{m}, AND SUBSONIC ASYMMETRICAL BODY $C_{D_{0}}, C_{D}$
Digital Datcom body solutions generally include lift, drag, and pitching moment coefficients. In the transonic speed regime the solutions are restricted to lift and pitching moment slopes, and drag coefficients. 4.6.1 Subsonic Bodies

Subsonic body analysis computes lift, drag, and pitching moment coefficients for either axisymmetric or cambered bodies. Digital Datcom body methods are identical to Datcom except for the base drag. Digital Datcom calculates base drag using a minimum base area equal to 30% of the body maximum cross-sectional area.

The cambered body pitching moment method is not defined in Datcom and is therefore described in detail. For clarity, the lift method, which is defined in Datcom, is also described. These body methods (subroutine $B(D \| P T)$ are executed when the parameters Z_{U} and Z_{L} are user specified (namelist $B \not \subset D Y$). The method predicts the zero lift angle of attack, zero lift pitching moment, and body lift and pitching moment versus angle of attack. The Datcom.drag methods are retained.

Zero lift angle of attack and pitching moment are calculated utilizing conventional mean line theory. The equations are:

$$
\begin{gathered}
\alpha_{0}=\frac{-57.3}{\pi} \int_{0}^{0.95} \frac{z^{\prime}}{L}\left[\frac{1}{(1-X / L)\left[X / L-(X / L)^{2}\right] 1 / 2}\right] d(X / L) \text {, degrees } \\
c_{m_{0}}=2.0 \int_{0}^{1.0} \int^{1}\left[\frac{1-2.0 X / L}{L}\left[X / L-(X / L)^{2}\right]^{1 / 2}\right] d(X / L)
\end{gathered}
$$

These parameters are defined in Figure 25.
Lift and moment for asymmetric bodies are calculated by employing a modified version of Polhamus's leading-edge suction analogy (Keferences 2 and 3). Polhamus considers two components of lift, a potential flow term, $C_{L_{P}}$, and a vortex-lift term $C_{L_{V}}$. Both of these terms are a function of body aspect ratio (A) and are defined as follows:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{L}} & =\mathrm{C}_{\mathrm{L}_{P}}+\mathrm{C}_{L_{V}} \\
\mathrm{C}_{\mathrm{L}_{\mathrm{P}}} & =K_{P} \sin \alpha \cos ^{2} \alpha \\
\mathrm{C}_{\mathrm{L}_{V}} & =K_{V} \sin ^{2} \alpha \cos \alpha \\
\alpha & =\text { angle of attack }
\end{aligned}
$$

K_{p} and K_{V} are ottained from Figure 26.
The Polhamus vortex lift equation wist be modified to make it applicable to thick bodies because the onseb of vortex lift for such configurations is not at zero angie of attack as it is with flat plate wings. The thick body angle of attack for onset of vortex lift (α_{v}) can be correlated with the fineness ratio ($F K$), and tire thickness ratio (TR) of the body as shown in Figure 27a. The body thickness parameters are shown in Figure 27b. Experimental sata used in correiation are presented in keferences 4 through 7. The redefired lift expressions for thick bodies are as follows:
$C_{L_{P}}=K_{P} \sin a \cos ^{2} \alpha$
$C^{\prime} L_{V}=K_{V} \sin ^{2}\left(\alpha-\alpha_{V}\right) \cos \left(\alpha-\alpha_{V}\right)$
$C^{\prime} L_{L}=C_{L_{P}}+C^{\prime} L_{V}$

The body pitching moment is obtained by estlmating the center-ofpressure locations of both the potential and vortex lift components. The total pitching moment is equal to the sum of the moments produced by the lift forces acting at their respective center-of-pressure locations plus the zero lift pitching moment. The potential lift center-ofpressure location employed stems from slender body theory and is presented in Figure 28 as a function of n. The equation for the powerlaw planform is of the form $R=R_{\max }(X / L)$. . The program computes an exponent n that closely approximates the input planform area. The potential lift center-of-pressure location is obtained from Figure 28 or the equation,

$$
x_{c p} / L=2 n /(2 n+1)
$$

SIDE VIEW (X_{i} values shifted to sody nose)

FIGURE 25 ASYMMETRIC BODY GEOMETRY INPUTS

FIGURE 28 POTENTIAL AND VORTEX LIFT COMPONENTS

FIGURE 27a CORRELATION OF aV

FIGURE 27b BODY THICKNESS PARAMETERS

figure 28 POTENTIAL LIFT CENTER OF PRESSURE

Vortex lift center of pressure is assumed to be located at the total planform centroid of area. The equation for the body pitching moment coefficient is:

$$
\begin{aligned}
& c_{m}=c_{m_{0}}+c_{m_{p}}+c_{m_{V}} \\
& c_{m_{p}}=c_{N_{p}}\left(x_{C G}-x_{C p}\right) / L \\
& c_{m_{v}}=c_{N_{v}}\left(x_{C G}-\bar{x}\right) / L
\end{aligned}
$$

where \bar{X} is the location of the total planform center of area measured from the body nose. The method is applicable at angles of attack equal to or greater than the wing maximum lif: angle of attack.

4.6.2 Transonic Bodies

Digital Datcom body solutions are restricted to lift and pitching moment slopes, and drag coefficients in the transonic speed regime. These data are computed by performing a linear interpolation between the subsonic ($M=0.60$) and supersonic ($M=1.4$) Mach regimes.

Subroutines that implement the transonic body methods are BøDYRT, SUPBØD, TRSØNI, and TRS $\emptyset N J$.

4.6.3 Superscnic Bodies

Supersonic body analysis provides solutions for lift, drag and pitching moment coefficients. Datcom methods for lift, pitching moment slope, and drag coefficient require the body to be synthesized from a combination of body components comprised of a nose, after-body, and/or tail segments. Digital Datcom requires synthesized body configurations to be either nose alone, nose-after body, nose-after body-tail, or nose-tail segment combinations.

Some of the Datcom body drag meribựs in this speed regime have not been implemented in Digital Datcom. The affects of blunted noses on drag are not incorporated since, the body lift and pitching moment methods do not refiect the influences of this parameter. Some of the Datcom interference drag methods are also deleted. In this case, the methods were caitted because of their limited range of applicability.

Calculation of wing-body, or horizontal tail-iody, stability requires the lift curve slope of the body ahead of the wing or horizontal tail. Body C_{N} methods are executed for the portion of the body ahead of the wing, if the wing is present; the portion of the body ahead of the horizontal tail, if the horizontal tail is present; and entire body.

All methods are implemented by subroutine SUPE $\emptyset D$ except for a portion of the drag methods contained in subroutine FIG26.

4.6.4 Hypersonic Bodies

Hypersonic body analysis is performed at user designated Mach numbers that are equal or greater than 1.4. In this speed regime, Digital Datcom stabllity solutions include lift, drag and pitching moment coefficients.

Hypersonic body analyses for lift and pitching moment slopes and drag coefficients, like the supersonic body methods, require the body to be synthesized from a combination of body segments. Hypersonic body analysis is unlike the other Datcom hypersonic configuration analyses since the methods are defined independent of the supersonic results. Body $C_{N_{\alpha}}$ for portions of the body ahead of the wing and/or horizontal tail are also calculated.

The methods are implemented in subroutine HYPBOD. A small portion of the drag methoas are found in subroutine FIG26.

4.7 TRANSONIC WING-BODY C_{L}

The transonic wing-body lift coefficient, if not input using namelist EXPR--, is computed in subroutine WBCLB using the following equacions:

$$
c_{L_{I}}=\left(c_{L_{\alpha}}\right)_{w}^{*} \quad\left(\alpha_{j}\right)_{W}
$$

$$
\begin{aligned}
\left(C_{L_{j}}\right)_{W B}^{\prime} & =\left(C_{L_{a}}\right)_{B} a_{j}+\left[K_{W(B)}+K_{B(W)}\right]\left(C_{L_{a}}\right) \star_{W}{ }_{j} \\
& +I_{V_{B(W)}}\left(\frac{\Gamma}{2 \pi \pi_{j} V_{r_{1}} C_{r e}}\right)\left(\frac{d}{b}\right) a_{j}\left(C_{L_{a}}\right)^{*} \\
& +\left[k_{W(B)}+k_{B(W)}\right] C_{L_{i}}
\end{aligned}
$$

In computing the transonic wing-body pitching mos nt slope, the center of pressure of body-wing carryover is linearly interpolated between the values obtained at Mach 0.60 and Mach 1.40 in subroutine TRANCM.

4.8 WING-BODY-TAIL MOVEABLE HORIZONTAL TAIL TRIM

The all moveable horizontal tail incidence required to trim the vehicle ($C_{M_{C . G .}}=0$) at angle of attack is calculated in subroutine TRIMR2. At trim, the forces on the tail are $C_{L_{H}}$ and $C_{D_{H}}$ (trimmed lift ant drag), and are referenced to the local flow at a tail angle of attack of ($\alpha-\boldsymbol{\epsilon} \boldsymbol{H}$). Since these trimmed forces are located at the tail aerodynamic center, which is known, the total body moments can be summed as follows:

$$
\begin{aligned}
& C_{M_{W B}}+C_{M_{O H}} \cdot \frac{q_{H}}{q_{\infty}}-C_{L_{H}} \frac{\dot{q}_{H}}{q_{\infty}}\left[\frac{\Delta x_{A C}}{\bar{c}_{W}} \cos \left(\alpha-\varepsilon_{H}\right)+\frac{\Delta Z_{A C}}{\bar{c}_{W}} \sin \left(\alpha-\varepsilon_{H}\right)\right] \\
& +C_{D_{H}} \frac{q_{H}}{q_{\infty}}\left[\frac{\Delta Z_{A C}}{\bar{c}_{W}} \cos \left(\alpha-\varepsilon_{H}\right)-\frac{\Delta X_{A C}}{\bar{c}_{W}} \sin \left(\alpha-\varepsilon_{H}\right)\right]=0
\end{aligned}
$$

$C_{D_{H}}$ can be expressed as

$$
C_{D H}=C_{D_{O_{H}}}+\frac{\left(C_{L_{H}}\right)^{2}}{\pi A_{H} e_{H}}
$$

Hence, the only unknown is $\mathrm{C}_{\mathrm{L}_{H}}$, the tail lift at trim, which can be evaluated. From Sketch (a) note that

VIEW IN PLaNE OF SYMAETRY
$a=$ Airplane ar.gle of attack (positive as shown)
$x_{M}=$ Distance from c.g. to quarter-chord point of horizontal-stabilizer MAC
$\Omega=$ Angle defined by intersection of x_{H} with FRP (positive as shown with thorizontal stabilizer above c.g.)

Sketch (a)

$$
\begin{aligned}
& \frac{\Delta X_{a c}}{\bar{C}_{W}}=\frac{X_{H}}{\bar{C}_{W}} \cos \Omega \\
& \frac{\Delta Z_{a c}}{\bar{C}_{W}}=\frac{X_{H}}{\bar{C}_{W}} \sin \Omega
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \frac{\Delta y_{a c}}{\bar{C}_{W}} \cos \left(\alpha-\varepsilon_{H}\right)+\frac{\Delta Z_{a c}}{\bar{C}_{W}} \sin \left(\alpha-\varepsilon_{H}\right) \\
& \\
& =\frac{X_{H}}{\bar{C}_{W}}\left[\cos \Omega \cos \left(\alpha-\varepsilon_{H}\right)+\sin \Omega \sin \left(\alpha-\varepsilon_{H}\right)\right] \\
& \\
& =\frac{X_{H}}{\bar{C}_{W}} \cos \left(\Omega-\alpha-\varepsilon_{H}\right) \\
& \begin{aligned}
& \Delta Z_{a c} \\
& \bar{C}_{W} \cos \left(\alpha-\varepsilon_{H}\right)-\frac{\Delta X}{\bar{C}_{a c}} \\
& \bar{C}_{W} \\
& \sin \left(\alpha-\varepsilon_{H}\right) \\
&=\frac{X_{H}}{\bar{C}_{W}}\left[\sin \Omega \cos \left(\alpha-\varepsilon_{H}\right)-\cos s \sin \left(\alpha-\varepsilon_{H}\right)\right] \\
&=\frac{X_{H}}{\bar{C}_{W}} \sin \left(\Omega-\alpha+\varepsilon_{H}\right)
\end{aligned}
\end{aligned}
$$

The moment equation reduces to

$$
\begin{aligned}
& C_{M_{W B}}+C_{M_{O H}} \frac{q_{H}}{q_{\infty}}-C_{L_{H}} \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\bar{C}_{W}} \cos \left(\Omega-\alpha+\varepsilon_{H}\right) \\
& \\
& \quad+\left[C_{D_{O H}}+\frac{\left(C_{L H}\right)^{2}}{\pi A_{H} e_{H}}\right] \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\bar{C}_{W}} \sin \left(\Omega-\alpha+\varepsilon_{H}\right)=0
\end{aligned}
$$

Letting $\delta=\Omega-\alpha+\varepsilon_{H}$ and rearranging yields a quadratic on $C_{L_{H}}$.

$$
\begin{aligned}
& \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\bar{c}_{W}} \sin \delta \frac{\left(C_{L H}\right)^{2}}{\pi A_{H} e_{H}} \\
& \quad-\frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\bar{c}_{W}} \cos \delta\left(c_{L_{H}}\right) \\
& \quad+C_{D_{O H}} \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\bar{C}_{W}} \sin \delta+C_{M_{W B}}+C_{M_{O H}} \frac{q_{H}}{q_{\infty}}=0
\end{aligned}
$$

Simplifying,

$$
\frac{\tan \delta}{\pi A_{H} e_{H}}\left(C_{L_{H}}\right)^{2}-C_{L_{H}}+C_{D_{O H}} \tan \delta+\frac{c_{M_{W B}}+c_{M_{O H}} \frac{q_{H}}{q_{\infty}}}{\frac{q_{H}}{q_{\infty}} \frac{X_{H}}{\bar{C}_{W}} \cos \delta}=0
$$

From the quadratic formula,

In this form, the equation becomes invalid for $=0$, and can be further reduced to

$$
c_{L_{H}}=\frac{2\left[\frac{c_{M_{W B}}+c_{M_{O H}} \frac{q_{H}}{q_{\infty}}}{\frac{\bar{X}_{H}}{\bar{c}_{W}} \frac{q_{H}}{q_{\infty}} \cos \delta}+c_{D_{O H}} \tan \delta\right]}{1+\left[1-4\left[\frac{\tan \delta}{\pi A_{H} e_{H}}\right]\left[\frac{c_{M_{W B}}+c_{M_{O H}} \frac{q_{H}}{q_{\infty}}}{\frac{\bar{X}_{H}}{\bar{c}_{W}} \frac{q_{H}}{q_{\infty}} \cos \delta}+c_{D_{O H}} \tan \delta\right]\right.}
$$

A plus sign in front of the radical is the valid solution, otherwise at $\delta=0$ the solution is undefined. This result is similar to Daticom equation 4.5.3.2-e, with the exception of the term " $\mathrm{C}_{\mathrm{m}_{\mathrm{OH}}} \mathrm{qH}_{\mathrm{H}} / \mathrm{q}_{\infty}$."

Once the tail lift at trim $\left(C_{L_{H}}\right)$ has been determined, a variation of Datcom equation 4.5.1.2-a can be used to calculate the tail incidence ${ }^{\boldsymbol{n}} \mathrm{i}_{\mathrm{H}}$.

$$
\begin{aligned}
& C_{L_{H}}=c_{L_{H}}^{\prime}\left(K_{H(B)}+K_{B(H)}\right) \\
& +C_{L_{\alpha_{H}}^{\prime}}^{\prime}\left(a_{i_{H}}\right)\left[k_{H(B)}+k_{B(H)}\right] \\
& +I_{V_{B(H)}}\left(\frac{r}{2 \pi a V r}\right) \frac{\left(b / 2-b^{* / 2}\right)}{(b / 2)} C_{L^{*}} \cdot{ }_{\alpha_{H}}{ }^{\alpha_{e f f}}
\end{aligned}
$$

where $C_{L_{H}}{ }^{*}$ is the pseudo lift-curve-slope of the horizontal tail in the presence of the body,

$$
c_{L_{\alpha_{H}}^{*}}=c_{L_{\alpha_{H}}}\left(K_{H(B)}+K_{B(H)}\right)
$$

$\mathrm{C}_{\mathrm{L}_{\mathrm{H}}}$ ' and $\mathrm{C}_{\mathrm{L}_{H}}{ }^{\prime}$ are the horizontal tail lift and lift curve slope at

$$
\left(\alpha-\varepsilon_{H}+\alpha_{O H}\right)
$$

and $\alpha_{a f f}$ is the effective angle of attack of the horizontal tail in the presence of the body

$$
a_{e f f}=a-\varepsilon_{H}+a_{O H}+a_{i_{H}}\left(\frac{k_{H(B)}+k_{B}(H)}{\bar{K}_{H(B)}+K_{B}(H)}\right)
$$

The incidence angle to trim can then be solved directly, and becomes
$a_{i_{H}}=\frac{C_{L_{H}}-\left(K_{H(B)}+K_{B(H)}\right)}{\left(k_{B(H)}+K_{H(B)}\right)}\left[\frac{C_{L_{H}}^{\prime}+C_{L_{a H}}^{\prime}\left(a-\varepsilon_{H}+\alpha_{O H}\right) I_{V_{E / H}}\left(\frac{r}{2 \pi V r}\right)}{\left.C_{L^{\prime}}{ }_{\alpha_{H}}+I_{V_{B(H)}}\left(\frac{r}{2 \pi V r}\right){ }_{H}\left(\frac{b / 22^{-b \star / 2}}{b / 2}\right)\right]}\right.$
Once the tail lift and drag at trim has been computed the panel hinge moment about the pivot point can also be computed. Since $C_{L_{H}}$ and $C_{D_{H}}$ are are referenced to the local flow, they must be computed relative to the freestream flow. Relative to V_{∞}, trim lift and drag are

$$
\begin{aligned}
& \left.{ }^{C_{L_{H T R I M}}}={ }^{\left(C_{L_{H}}\right.} \cos \varepsilon-C_{D_{H}} \sin \varepsilon\right) \frac{q_{H}}{q_{\infty}} \\
& C_{D_{H}} \\
& \\
& =C_{D_{D_{H R I M}}}+\frac{C_{L_{H}}}{\pi A_{H R I M} e_{H}}
\end{aligned}
$$

The pitching moment trimmed is

$$
C_{M_{H_{T R I M}}}=C_{L_{H_{T R I M}}}\left[\frac{x_{H}}{\bar{C}_{W}} \cos \delta\right]+C_{D_{H_{T R I M}}}\left[\begin{array}{ll}
\frac{X_{H}}{\bar{C}_{W}} & \sin \delta
\end{array}\right]
$$

The hinge moment about the pivot point is

$$
C_{H M}=\left[C_{L_{H_{T R I M}}} \quad \cos \alpha+C_{D_{H_{T R I M}}} \quad \sin \alpha\right]
$$

4.9 WING-BODY-TAIL TRIM WITH CONTROL DEVICES

Configuration trim with wing or horizontal tail control devices is performed in subroutine TRIMRT. The method programmed, which is not a Datcom method, essentially does a table look-up of the control device incremental pitching moment coefficient versus control deflection for the deflection required to trim. The incremental lift coefficient and drag coefficient are then obtained by performing table look-ups for these variables (which are a function of control deflection aagle) at the trimmed control defiection.

4.10 STANDAKD ATMOSPHERE MODEL

Incorpoiation of a standard atmosphere model. (subroutine ATMOS) into Digital Datcom provides input and output flexibility for the user. The program can operate on Mach number and altitude as separate independent. variables. The addition of vehicle weight and flight path angle perrit calculation of equilibrium flight conditions.

The program allows the user to input eicher Mach number or velocity as an indepencient variable for speed reference. If velocity is input, the free stream static temperature must be available so that Mach number can be calculated. The user will also have the option to specify a filight altitude, or static pressure and temperature, as an independent variable defining the aimospheric conditions. If altitude is specified, pressure and temperature will be found using the "U.S. Standard Atmosphere, 1962:"

The user may input up to 20 Mach or velocity points. If Mach number is input, the velocity will be calculated for each point where atmospheric data are input. When velocity is input the Mach number will be calculated using atmospheric conditions. If velocity is input instead of Mach numbers and atmospheric conditions are not defined, an error message will be written and Mach numbers will, be calculated using a speed of sound of $1000 \mathrm{ft} / \mathrm{sec}$.

The user may also input up to 20 atmospheric conditions. The atmosphere may be defined by altitude, pressure and temperature, or Reynolds number. If the altitude is given, pressure and temperature will be determined using the
atmosphere model developed in Reference 9. The Keynolds number will be calculated using the following equatior. (in the foot-pound-second system of units):
$\mathrm{RN} / \mathrm{L}=\rho \mathrm{V} / \mu=1.2527 \times 10^{6} \mathrm{PM}(\mathrm{T}+198.6) / \mathrm{T}^{2}$
This equation was derived using the following relationships:

$$
\begin{aligned}
& \rho=P / R T \\
& V=M \sqrt{Y R T} \\
& \mu=2.270 \times 10^{-8} T^{1.5} /(T+198.6)
\end{aligned}
$$

If the Reynolds number is not input and cannot be calculated, an error message will be written and the Reynolds number will be set to $5 \times 10^{6} / \mathrm{ft}$. Given the vehicle weight, flight path angle, and atmospheric conditions, the equilibrium flight aerodynamic data can be tetermined. Equilibrium flight is achieved when the following relationstip is satisfied. $W T=\left(C_{L} \cos \delta-C_{D} \sin \delta\right) q S$
Along with the untrimaned aerodynamic output, the level flight ($\delta=0$) lift coefficient will be output. Trim data output will. provide an additional line of output at the equilibrium flight conditions (subroutine FLTCL)

SECTION 5

SYSTEM RESOURCE REQUIREMENTS

Digital Datcom is a large and rather complex computer program which requires specific computer resources to execute within a fixed core requirement. The program is written to conform to the American National Standards Institute (ANSI) Standard Fortran IV. Certain computer resources must be available to make the program operational without modifications These resources are:

- Six disk files or scratch tapes are required for manipulation and retrieval of input data. The logical $1 / 0$ units used are 8,9 , 10, 11, 12 and 13. These logical units are in addition to logical unit 5 (read) and unit 6 (write).
o The system must have capability for primary and secondary overlay structures.
o The system must have a Fortran compiler which provides for NAMELIST input and output, and statement transfer when an end of file is detected.

Each logical unit referenced by the program is reserved for a specific purpose. The units referenced and their use in the program are listed below:

Unit
5 Standard system input (card reader)
6 , Standard system output (printer)
8 Storage of experimental data namelists for the case being executed
9 Storage of input namelists, except experimental data; for the case being executed

11 Storage of all input data after processing by the input diagnostic analysis module (CøNERR)

Storage of extrapolation messages for processing by overlay 57 Storage of output data for use with the Plot Module as a postprocessing option

SECTION 6

PROGRAM CONVERSION MODIFICATIONS

6.1 GENERAL REMARKS

The program was written in Fortran IV for the CDC Cyber 175 computer system. Several program modifications may be required to run under other Fortran compilers or computer systems. It is recommended that users implementing the program for their computer system become familiar with their installation operating system and Fortran compiler requirements. Users are forewarned that program core requirements and run times discussed in this report may no longer be valid.

6.2 PROGRAM STRUCTURE

The program is composed of a root segment overlay (overlay 0), fiftyseven primary overlays and twenty-eight secondary overlays. Table 7 shows the overall program structure and lists those routines that are contained in each overlay. In the CDC system, the first routine in an overlay is called a "program" and subsequent routines "subroutines." Several subroutines appear in more than one overlay. These subroutines are called "common decks" and are listed in Table 8.

6.2.1 Calls to Overlay

All primary overlays are called by the root segment overlay, and secondary overlays called by their respective primary overlay using the calling sequence

CALL OVERLAY (4LDATC, XX, YY, 6HRECALL)
where: DATC is the disc file where the overlay is located,
$X X$ is the primary overlay number in decimal, and YY is the secondary overlay number in decimal.
Hence, each overlay is written to a disk file with the name "DATC." Users should refer to the Fortran reference manual for their system and determine the correct overlay calling procedure.

6.2.2 Common Decks

Several subroutines are used in more'than one overlay. The most commonly used routines are located in the root segment for access by all overlay programs and subroutines. However, several decks are used by only a few
routines and placing thew in the root segment would require an increase in overall program core size. In order to maintain a low core requirement, these common decks are located in each overlay in which it is referenced.

Warning - Not all systems allow two routines to have the same name even though they are identical. If the user's system does not allow this option, three alternatives are available as follows:
o Rename each deck that is common, and change the calling sequence to it. natives are available as follows:
o Place all common decks in the root segment (overlay 0) and remove the deck from each associated overlay'. The user will increase the overall program core requirement by using this technique, however, it is easier than the procedure outlined above.
o On some systems that have multiple region capability', these common decks can be placed in a separate overlay region.
6.2.3 "OVERLAY" and "PROGRAM" Cards.

Each primary and secondary overlay main program contains these two cards. The CDC Fortran compiler requires all overlays to begin with an "OVERLAY" card followed by a main program which begins with a "PROGRAM" card. These must be replaced by corresponding code required by the operating system and compiler being employed.

6.2.4 End of File Tests

Routines INPUT, CめNERR and XPERNM utilize a transfer on end of file. This statement must be modified for the Fortran compiler being used. 6.2.5 Use of "IIVJSED" and "KAND"

These cunstants are set in BLDCK DATA. The value for "UNUSED" is set, in the program as 10^{-60}. It is sometimes used as a program flag and is used for initializing all variable arrays. to some number other than zero. The jalue for "UNUSED" can be changed if desired and wust be defined in BLØCK DATA as a small positive number. The variable "KAND" defines the alphabetic character used by the NAMELIST t 'iputs. It is set to ' $\$$ ' for CDC systems.

SECTION 7

PROGRAM DECK DESCRIPTION

This section contains a description of all routines in Digital Datcom. Table 7 lists the decks by overlay, Table 8 lists those "common decks" in the program, and Table 9 describes the purpose of each deck and the overlays referenced. For convenience, Table 9 lists the routines in alphabetical order. Table 10 discusses the use of each of the variables in the Digital Datcom control data slocks. The description of the plot module routines is provided in Volume III of this report.

A complete prograw listing, which includes Digital Datcom and the Piot Module, is provided as a microfiche supplement to this report.
table 7 digital datcon overlay description

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

TABLE 7. DIGITAL DATCOM OVERLAY DESCRIPTION

TABLE 7 DIGITAL DATCOH OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
05	ECSPCI	
	M05105	CALCULATE HORIZONTAL TAIL DRAG DATA
	CDRAG	: .
	FIG53A	
06	M06006	CALCULATE SUESONIC AXISYMMETRIC BODY aEroornamics
	BIDYRT	
	EQSPCE	
	EQSPCI	
	GETMAX	
	TRAPZ	
	Bgdrju	
	M07807	CALCULATE SUBSONIC WING-BODY AERODYNAMICS
07.1	- WBAERD	CALCULATE WING-BODY $C_{D}, C_{L}, C_{M}, C_{N}, C_{A}$
	BDDPWG	
	$\therefore \quad$ ALI	
	TRAPZ	
	WBDRAG	
	WBLIFT	\because
	- WBCM	
	- WBCMO	.
	- tablẽ	

table 7 digital datcor overlay description

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTIOH
07, 2	WBCD	CALCULATE WING-BODY $\mathrm{C}_{\text {d }}$
	WBCDL TABLES	
	TBSUB	
	TBTRN	
	TBSUP	
08	M08¢ 10	Calculate subsonic vertical tail drag data
	- YTDRAG	
99	M09@11 VFDRAG	Calculate subsonic wing flow field at horizontal tail
	DYPRLS	
	DWASH	
	TRAPZ	
10	M10912	CALCULATE SUBSONIC WING-BODY-TAIL AERODYNAMICS
	BøDOWG	
${ }^{\circ}$	ALI.	
	WGEPTL	
	WbTAIL	
11	M1913	CALCULATE GROUND EFFECTS
	DMPARY	
	tiRDEFF	

table 7 digital datcor overlay description

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTIOM
12	M12014	PRINTS OUTPUTS
12, 1	Qutput	PRINT CONVENTIONAL OUTPUTS
	- headr	
	\therefore PRCSID	
	INTERM	
	\therefore SWRITE -	
12,2	AUXDUT	PRINT AUXILIARY AND PARTIAL OUTPUTS
	- PRCSID	
	- SWRITE	
	- AXPRNT	
	- Arccos	
	PRNSEC	
12,3	WPLBT -	WRIte plot data to unit 13
13	M13815	Calculate propeller power effects
	PRPWEF	
	Angles	
	zerang	
14	M14016	CALCULATE SUBSONIC LOW ASPECT RATIO Wing and wing-body
	LgARWB	AERODYNAMICS

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

table 7 digital datcor overlay description

table 7 digital datcom overlay description

TABLE 7 dIGITAL DATCOM OVERLAY DESCRIPTION

TABLE 7 dIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
25, 1	TRANCM TLIN4X WBCMI WBTRAN	CALCULATE WING, WING-BODY $\mathrm{c}_{\mathrm{m}_{\alpha}}$. .
25, 2	TRHTCM TLIN4X WBCMI HBTRAN	CALCULATE H.T., H.T.-BODY $\mathrm{C}_{\mathrm{m}_{\alpha}}$
25,3	- TRACMO WBCMO TABLEC	
26	M26932 HYPBgO TRAPZ	CALCULATE HYYERSONIC BODY AERODYNAMICS
27	M27033 SUPLNG	CALCULATE SUPERSONIC WING STABILITY data
	M28034	CALCULATE SUPERSONIC WING-BODY-TAIL AERODYMAMICS
	SUPWBT	
	BQDOWG ALI	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

table 7 digital datcor overlay description

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
34	M34042	DEFINE NUMBER OF CARDS IN EACH EXPERIMEN*'IL DATA NAMELIST
	XPERNM	
\cdot	TEST	
35	M35043	CALCULATE TRANSONIC WING-BODY-TAIL $C_{L_{\alpha}}$ AND SECOND LEVEL METHODS
35, 1	SETUP2	SET-UP FOR SECOND LEVEL METHODS
	CLBCLC	
35, 2	WBTRA	CALCULATE TRANSOIIIC WING-BODY-TAIL DATA
	TRAWBT	
35, 3	SECLEV	COMPUTE SECOND LEVEL DATA
	WINGCL	
	WBCLB	
	BøDgWG	
	- ALI	
	WBTCDE	
	CDWBT	
	CLWBT	
	CNCA	
36	M36p44 -	Calculate flap lift and hinge moment data
	LIFTFP	
	HINGE CTABS	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
37	M37845	CALCULATE FLAP PITCHING MOMENTS
	SIMUL4	
	TRAPZ	
	FLAPCM	
	gDELTA	-
	AGENR	
	DET4	
38	M38946	CALCULATE SUBSONIC FLAP DRAG AND TRIM AERODYNAMICS
	TRIMR2	
	TRIMRT	.
	DRAGFP.	
39	M39947	PRINT HIGH LIFT AND CONTROL DATA
	QUTPT2	
	PRCSID	
	SWRITE	
	FLTCL	
	DUMP2	.
	DMPARY	
40	M40950	CALCULATE TRANSONIC LATERAL CONTROL/FLAP AERODYNAMICS
	TRNYRL	

table 7 dIGItal datcom overlay description

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTIOH
43	M43953	CALCULATE DYNAMIC DERIVATIVES-SUBSONIC, TRANSONIC, SUPERSONIC
	TLIP3X	
	TLIP2X	
	- TLIPIX	
	YUP	
	CMALPD	
	SUBPA	
	SUBPAH	
43,1	SUPPAW	- .
43, 2	SUPCMQ	
43, 3	SUPPAH	Calculate h.t. dyiamic derivations
43, 4	SUPHMQ	CALCULATE H.T. $\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}$ derivations
44	H44054	calculate supersonic wing "d" derivatives
	ARCSIN	. ${ }^{\text {a }}$
.	ILIP3X	
	TLIP2X	
	TLIPIX	
	YUP	
	$\begin{aligned} & \text { SUPCLD } \\ & \text { SL:PHLD } \\ & \hline \end{aligned}$	

table 7 digital datcor overlay description

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTIOH
45	$\therefore \text { CALCA }$	CALCULATE WING AND WING-BODY YAW AND ROLL derivatives
	TLIP3X	
	TLIP2X	
	ILIPIX Yup:	
	INTEP3	
45, 1	WINGYW	
	SUBRYW SUPRYW	
45. 2	H@RTYW SUBHYW SUPHIW	
46	M46956	CALCULATE WING-BODY-TAIL DYNAMIC DERIVATIVES
	TRAPZ	-
	PRCSID	
	dMPARY	
		. - .
	-	-

TABLE 7 dIGITAL DATCOM OVERLAY DESCRIPTION

	\qquad
$\begin{aligned} & \text { き } \\ & \text { 㐅 } \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$	\qquad

table 7 digital datcor overlay description

TABLE 7 DIGITAL DATCOH OVERLAY JESCRIPTION

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION
OVERLAY DESCRIPTIOH

TABLE 8 PROGRAM COMMON DECKS

Deck Name	Overlays $\mathrm{R} \sim$ ferenced
ALI	7, 10, 20, 28, 35
ANGLES	$2,13,15,16,18$
ARCCDS	12, 21, 41, 42, 50, 53
ARCSIN	21, 41, 42, 44
BØDDWG	7, 10, $20,28,35$
CALCALC	31, 33
Calcao	15, 16
CDRAG	3, 5
CLMXBS	15, 16
CLMXBI	24 (Both Secondary Overlays)
CMALPH	31, 33
DFLCCN	41, 53
DMPARY	11, 39, 42, 46, 47, 49
EQSPCE	4, 6
EOSPCl	4, 6
FIG5 3A	3, 5
FIG68	21, 42
GETMAX	4, 0, 29
INFTGM	2, 21
LIFTCF	15, 16
PRSCID	12, 39, 42, 46, 47
SETUPI	2, 18
SIMUL2	38, 42, 47
SWRITE	12, 39
TABLEC	7, 20, 25
TABLES	7, 24
TBSUB	7, 24
TBSUP	7, 24
TBTRN	7, 24
TEST	1, 34
TLIN4X	17, 25, 26, 52
TLIPIX	43, 44, 45, 54
TLIP2X	43, 44, 45, 54
TLIP3X	43, 44, 45, 54
TRANF	24 (Both Secondary Overlays)
TRAPZ	$4,6,9,19,23,26,29,37,46,47$
WBCDL	7, 24
WBCMO	7., 20, 25
WBCM1	25 (Both Secondary Overlays)
WTGEDM	2, 18
WTLIFT	15, 16
YUP	43, 44, 45, 54
2ERANG	1, 2, 13, 18

table 9 digital datcor routine description

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
AGENR	37	GENERATES COEFFICIENTS FOR G/\% CALCULATIONS BY GDELTA
AIRFgL	50	CONTROLLING PROGRAM FOR CALCULATING AIFFOIL GEOMETRY FRUA NACA DESIGNATION
ALDLPR	42	PRINTS BLANKS WHEN NO COMPUTED VALUES ARE PRESENT
ALI	7,10,20,28,35	COMPUTES VORTEX INTERFERENCE FACTORS
ANGLES	2,13,15,16,18	COMPUTES TRIG AND Inverse trig functions of an argument
ARCLSS	2	CLASSIFIES WING/TAIL PLANFORM AS HIGH OR LOW ASPECT RATIO
ARCC@S	${ }^{12,21,41,42,50} 53-5$	COMPUTES ARC-COSINE OF AN ARGUMENT JSING STANDARD FORTRAN
ARCSIN	21,41,42,44	COMPUTES ARC-SINE OF AN ARGUMENT USING STANDARD FORTRAN
AREAI	56	CALCULATES INCREMENTAL AREAS OF VERTICAL TAIL SHADOWED BY MACH LINE
AREA2	56	Calculates Incremental area of body shadowed by mach line
ASMINT	50	NON-LINEAR INTERPOLATION ROUTINE FOR AIRFOIL SECTION MODULE
ATMDS	1	COMPUTES PROPERTIES OF 1962 U.S. STANDARD ATMOSPHERE
Auxgut	12	PRINT AUXILIARY OUTPUTS FOR A CASE
AXPRNT	12	PRINT AUXILIARY OUTPUTS FOR WING/TAIL FLANFORMS
BDAREA	56	EXECUTIVE FOR BODY PARTS SHADOWED BY MACH LINE SHADOWING CALCULATIONS
BLDCK DATA	0	SETS PROGRAM CONSTANTS, AND VARIABLE NAMES FOR C@NERR
BøD@PT	4	COMPUTES ASYMMETRICAL BODY AERODYNAMICS
BgDQUG	7,10,20,28;35	COMPUTES BODY VORTEX EFFECTS ON WING
BgDYRT	6	COMPUTES AXISYMMETRIC BODY C_{L}, C_{D}, C_{m}
BODYJM	6	COMPUTE BODY AERODYNAMICS USING JOERGENSEN'S METHOD
CACALC	.31, 33	COMPUTES WING C_{N}, C_{A}
CALCA	44	COMPUTES WING ACCELERATION PARAMETERS ($¢$)

table 9 digital datcor routine description

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
CALCAO	15, 16	COMPUTES LIFTING SURFACE $\alpha_{O_{L}}$
CCARD	1	CHECK CONTROL CARD FOR LEGAL INPUT
CDRAG	3, 5	COMPUTES LIFTING SURFACE C_{D}
CDWBT	35	CALCULATES TRANSONIC WING-BODY-TAIL $C_{\text {d }}$
CHECK	1	CHECK MACH REGIME LIMITS AND SET PRINT FLAGS
CLBCLC	35	CALCULATES TRANSONIC WING AND WING-BODY $C_{\ell_{\beta}}$ AND $C_{\ell_{\beta}} / C_{L}$
CLEARA	57	CLEAR STORAGE ARRAYS FOR EXTRAPOLATION MESSAGES
CLMCHO	0	COMPUTES LIFTING SURFACE C_{L} AT MACH $=0$
CLMXBS	15, 16	COmputes lifting surface $\mathrm{C}_{\text {LMiX }}$
CLMXBI	24	COMPUTES LIFTING SURFACE $C_{\text {LMAX }}$ AT MACH $=0.6$
CLRDER	46	COMPUTES THE CONFIGURATION $\mathrm{C}_{\ell_{r}}$ derivative
CLWBT	35	COMPUTES TRANSONIC WING-BODY-TAIL C C_{L}
CMALPH	31, 33	COMPUTES LIFTING SURFACE $\mathrm{c}_{\mathrm{m}_{\alpha}}$
CMALPD	43	COMPUTES LIfTING SURFACE $\mathrm{C}_{\mathrm{m}_{\alpha}}$ AT MACH=0
CNCA	35	CALCULATES C_{N} AND $^{C_{A}}$
CONERR	1.	CONTROLLING PROGRAM FOR InPUT ERROR DIAGNOSTIC ANALYSIS
COQRDI	50	CALCULATES NACA l-SERIES AIRFOIL COORDINATES
CPQRD4	50	CALCSat S
CPDRD5	50	CALCULATES NACA 5-DIGIT AIRFOIL COORDINATES
CPARD6	50	CALCULATES NACA 6-SERIES AIRFOIL COORDINATES
Cardim	50	CALCULATES NACA 4-digit modified airfoil coordinates

TABLE 9 DIGITAL DATCOH ROUTINE DESCRIPTION

ROUTINE HAME	0.VERLAYS REFERENCED	UESCRIPTION
CORD5M	50	CAlculates naca 5-digit modified airfoil coordinates
CONV	1	SET-UP FOR UNITS SPECIFICATION
CORDSTP	50	CALCULATE GEOMETRY DATA FOR SUPERSONIC AIRTOILS
CSLDPE	50	COMPUTE GEOMETRIC SLOPE FOR SUPERSONIC AIRFOILS
CTABS	36	CONTROL TABS METHOD SUBROUTINE
DATC®M	0	TOP LEVEL EXECUTIVE PROGRAM
DECFIG	57	CONVERT FIGURE NUMBERS IN EXTRAPOLATION MESSAGES
DET4	37	EVALUATES A 4×4 determinate
DECPDE	50	DECODES USER INPUT NACA DESIGNATION
DELY	50	CALCULATES AIRFOIL \triangle Y
DFLCDN	41,53	CALCULATES SUPERSONIC LIFT, ROLL MOMENT AND HINGE MOMENT DERIVATIVES
DMPARY	11,39,42,46,47	DUMP SPECIFIED ARRAY IN READABLE FORMAT \quad
	49	
DNPAWB	46	CALCULATES WING-BODY "q" AND "d". DERIVATIVES
DNPWBT	46	CALCULATES WING-BODY-TAIL "q" AND "¢" DERIVATIVES
DPRESR	21	Calculates non-viscous dynamic pressure at horizontal tail
DRAGFP	38	CALCULATES SUBSONIC FLAP INDUCED DRAG
DUMPRT	49	DUMPS ARRAYS USING DMPARY
DUMP2	39	CONTROL FOR PRINTING DUMPS OF INTERMEDIATE RESULTS
	-	

table 9 digital datcor routine description

ROUTIME HAME	OVERLAYS REFERENCED	UESCRIPTION
DWASH	9	CALCULATES SUBSONIC DOWNWASH AT ANGLE-OF-ATTACK
DYNBDD	46	CALCULATES BODY DYHAMIC DERIVATIVES
DYPRLS	9	COMPUTES DYNAMIC PRESSURE AT HORIZONTAL TAIL
EQSPCE	4, 6	TRANSFORMS 4-DIMENSIONAL ARRAY SO THAT THE 3 INDEPENDENT ARRAYS ARE EQUALLY SPACEC
EQSPC1	4,6	TRANSFORMS 2-DIMENSIONAL ARRAY LIKE EQSPCE
EXPDAT	48	LOADS THE EXPERIMENTAL DATA NAMELIST FOR THE CURRENT MACH NUMBER
EXSUBT	0	READS EXPERIMEHTAL DATA INPUTS
FIG26	0	CALCULATES FIG. 4.1.5.1-26; TURBULEHT SKIN FRICTION COEFFICIENT
FIG53A	3, 5	CALCULATES FIG. 4.1.5.2-53A; SUBSONIC LEADING EDGE SUCTION
FIG68	21, 42	CALCULATES OBLIQUE SHOCK WAVE ANGLE (TR-1135, EQN. 150)
FG6115	30	CALCULATES FIG. 4.6.1-15; DOWNWASH INCREMENT DUE TO A SUBSONIC JET IN A SUBSONIC STREAM
FLAPCM	37	COMPUTES WING C_{m} dUE TO FLAPS
FLTCL	39	PRINT DATA FOR TRIM CONDITIONS
GDELTA	37	CALCULATES FLAP SPANWISE LOADING COEFFICIENT, G/ δ
GETMAX	4, 6, 29	FOR $Y=f(X)$, FIND $Y_{\text {MAX }}$ AND $X_{\text {Ymax }}$
GLagK	0	TABLE LOOKUP LOGIC FOR TLIN_ L R ROUTINES
GRDEFF	11	COMPUTES GROUND EFFECTS ON AERODYNAMICS
HBTRAN	25	CALCULATES $\left(C_{L_{\alpha}}\right)_{B(H)}$ AND $\left(X_{a c} / \bar{C}_{r}\right)$ AT MACH=1.4 FOR TRANSONIC ANALYSIS
HEADR	12	WRITE HEADINGS FOR CASE OUTPUTS

table 9 digital datiom routine description

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
HINGE	36	Calculates flap hinge moment data
HORTYW	45	EXECUTIVE FOR HORIZONTAL-TAIL, HORIZONTAL-TAIL-BODY YAW DERIVATIVE CALCULATIONS
HYPBDD	26	COMPUTES HYPERSONIC C_{D}, C_{L}, C_{m}
HYPFLP	42	COMPUTES HYPERSONIC FLAP CONTROL AERODYNAMICS
HYPRQP	42	CALCULATES EQUILIBRIUM REAL GAS FLOW PROPERTIES
IDEAL	50	CALCULATES AIRFOIL SECTION IDEAL AERODYNAMIC COEFFICIENTS
INFTGM	2, 21	CALCULATES DOWNWASH SYNTHESIZING DIMENSIONS
INITZE	1	PROGRAM INITIALIZIHG ROUTINE
INITZI	51	InItIALIZE ARRAYS FOR PROGRAM USE
-INITZ2	51	INITIALIZE ARRAYS FOR HIGH-LIFT AND CONTROL
INIZ	50	INITIALIZE ARRAYS FOR AIRFOIL SECTION MODULE
INPUT	1	READS INPUT NAMELISTS
INPUTL	1	READS NAMELIST "LARWB" FOR INPUT
INPUT2	1	READS HORIZONTAL TAIL NAMELISTS FOR INPUT
INPUT3	1	READS VERTICAL TAIL NAMELISTS FOR INPUT
INPUT4	1.	READS VENTRAL FIN NAMELISTS FOR InPUT
INTEP3	45	tabel lookup routine for a specific table
INTERM	12	InTERMEDIATE LOGIT FOR OUTPUT
INTERX	0	LINEAR TABLE LOOKUP USING TLIN_X RCUTINES, 2 TO 5 dimensions
INTER3	47	table lookup routine for a specific table

table 9 digital daicily routine description

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
INTERM	12	Intermediate logic for output
INTERX	0 -	LINEAR TABLE LOOKUP USING TLIN_X ROUTINES, 2 TO 5 dimensions
INTER3	47	table lookup routine for a specific table
JLTFP	55	COMPUTES AERODYNAMIC INCREMENTS DUE TO JET FLAPS
JETPWE	30	COMPUTES EFFECTS OF JET POWER ON AERODYNAMICS
LATFLP	52	SUBSONIC LATERAL CONTROL/FLAP EFFECTIVENESS CALCULATIONS
LIFTCF	15, 16	COMPUTES LIFTING SURFACE C_{L}
LIFTfP	36	COMPUTES INCREMENTAL WING LIFT DUE TO FLAPS
LQARWB	14	COMFUTES LOW ASPECT-RATIO WING-BODY AERODYNAMICS
LVALUE	1	TEST FOR LEGAL LOGICAL CONSTANTS AND MULTIPLICATION FACTOR FOR INPUT
MACH2	21	CALCULATE PRANDTL-MEYER EXPANSION ANGLE
MAINOO	0	DATCOM PROGRAM TOP-LEVEL EXECUTIVE
MAINOI	0	PROGRAM CONTROL FOR SUESONIC AERODYNAMICS
MAINO2	0	PROGRAM CONTROL FOR SUBSONIC GROUND EFFECTS
MAIN03	0	PROGRAM CONTROL FOR TRANSONIC AERODYNAMICS
MAINO4	0	PROGRAM CONTROL FOR SUPERSONIC AERODYNAMIICS
MAIN05	0	PROGRAM CONTROL FOR SUBSGNIC HIGH LIFT AND CONTROL ANALYSIS
MAIN06	0	PROGRAM CONTROL FOR TRANSONIC HIGH LIFT AND CONTROL ANALYSIS
MAIN07	0	PROGRAM CONTROL FOR SUPERSONIC HIGF LIFT AND CONTROL ANALYSIS
MAJERR	1	CHECKS FOR MISSING ESSENTIAL NAMELISTS

TABLE 9 DIGITAL DATCOH ROUTINE DESCRIPTION

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
MASRAT	23	FINDS APPARENT MASS RATIO K, FIGURE 5.3.1.1-25
MAXCL	50	FINDS $\mathrm{C}_{\text {¢ MAX }}$ FOR AIRFOIL SECTION
MESSGE	0	PRINTS TA3LE LOOKUP ROUTINE EXTRAPOLATION MESSAGES
MO1001	1	EXECUTIVE FOR OVERLAY 1, INITIALIZE PROGRAM AND PROCESS INPUTS
M02902	2	EXECUTIVE FOR OVERLAY 2, CALCULATE GEOMETRIES AND SYNTHESIS DATA
M03003	3	EXECUTIVE FOR OVERLAY 3, SUBSONIC WING DRAG
M04ø04	4	EXECUTIVE FOR OVERLAY 4, SUBSONIC ASYMMETRIC BODY AERODYNAMICS
M05ฎ05	5	EXECUTIVE FOR OVERLAY 5, SUBSONIC HORIZONTAL TAIL DRAG
M06806	6	EXECUTIVE FOR OVERLAY 6, SUBSONIC AXIS YMAETRIC BODY AERODYNAMICS
M07ø07.	7	EXECUTIVE FOR OVERLAY 7. SUBSONIC WING, WING-BODY AERODYNAMICS
M08plo	8	EXECUTIVE FOR OVERLAY 8, SUBSONIC VERTICAL TAIL DRAG
M09@11	9	EXECUTIVE FOR OVERLAY 9, SUBSONIC WING FLOW FIELDS
M10912	10	EXECUTIVE FOR OVERLAY 10, SUBSONIC WING-BODY-TAIL AERODYNAMICS
M11813	11	EXECUTIVE FOR OVERLAY 11, GROUND EFFECTS
M12014	12	EXECUTIVE FOR OVERLAY 12, PRINT OUTPUTS
M13015	13	EXECUTIVE FOR OVERLAY 13, PROPELLER POWER EFFECTS
M14816	14	EXECUTIVE FOR OVERLAY 14, LOW ASPECT RATIO AERODYNAMICS
H15017	15	EXECLTIIVE FOR OVERLAY 15, SUBSONIC WING LIFT
M16p20	16	EXECUTIVE FOR OVERLAY 16, SUBSONIC HORIZONTAL TAIL LIFT
H17021	17	EXECUTIVE FOR OVERLAY 17, SUBSONIC LATERAL STABILITY

táble 9 digital datcon routine description

ROUTINE LAME	OVERLAYS REFERENCED	UESCRIPTION
M18122	18	EXECUİIVE FOR OVERLAY 18, SUPERSONIC WING DRAG
M19p23	19	EXECUTIVE FOR OVERLAY 19, SUPERSONIC BODY AERODYNAMICS
M20024	20	EXECUTIVE FOR OVERLAY 20, SUPERSONIC WING-BODY AERODYNAMICS
M21925	21	EXECUTIVE FOR OVERLAY 21, SUPERSONIC WING FLOW-FIELDS
M22026	22	EXECUTİVE FOR OVERLAY 22, SUPERSONIC HORIZONTAL-TAIL AERODYNAMICS
M23027	23	EXECUTIVE FOR OVERLAY 23, SUPEPSONIC LATERAL STABILITY
M24030	24	EXECUTIVE FOR OVERLAY 24, TRANSONIC WING AERODYNAMICS AND BODY STABILITY DATA
M25831	25	EXECUTIVE FOR OVERLAY 25, TRANSONIC WING/WING-BODY $\mathrm{C}_{m_{\alpha}}$
M26832	26	EXECUTIVE FOR OVERLȦY 26, hYPERSONIC BODY AERODYNAMICS
M27933	27	EXECUTIVE FOR OVERLAY 27, SUPERSONIC WING STABILITY
H28934	28	EXECUTIVE FOR OVERLAY 28, SUPERSONIC WING-BODY-TAIL AERODYNAMICS
M29@35	29	EXECUTIVE FOR OVERLAY 29, LATERAL STABILITY GEOMETRY DATA
M30936	30	EXECUTIVE FOR OVERLAY 30, JET POWER EFFECTS
M31037	31	EXECUTIVE FOR OVERLAY 31, SUBSONIC WING C_{m}, BODY C_{n}, C_{N}
M32040	32	EXECUTIVE FOR OVERLAY 32, supersonic vertical tail lift
M33041	33	EXECLTIVE FOR OVERLAY 33, SUBSONIC HORIZONTAL TAIL C_{m}
M34042	34	EXECUTIVE FOR OVERLAY 34, DEFINE EXPERIMENTAL DATA INPUT
M35043	35	EXECUTIVE FOR OVERI.AY 35, TRANSONIC AERODYNAMICS
M36844	36	EXECUTIVE FOR OVERLAY 36, flap LIft and hinge moments
M37845	37	EXECUTIVE FOR OVERLAY 37, FLAP PITCHING MOMENTS

TABLE 9 digital datcon routine description

$\begin{gathered} \text { ROUTINE } \\ \text { HAME } \end{gathered}$	OVERLAYS REFERENCED	UESCRIPTION
M38846	38	EXECUTIVE FOR OVERLAY 38, SUBSONIC FLAP DRAG AND TRIM AERODYNAMICS
M39847	39	EXECUTIVE FOR OVERLAY 39, PRINT HIGH LIFT AND CONTPNL DATA
M40950	40	EXECUTIVE FOR OVERLAY 40, TRANSONIC LATERAL CONTROL/FLAP AERODYNAMICS
M41951.	41	EXFCUTIVE FOR OVERLAY 41, SUPERSONIC HIGH LIft and Control aerodynamics
M41052	42	EXECUTIVE FOR OVERLAY 42, HYPERSONIC FLAP AERODYNAMICS
M42953.	43	EXECUTIVE FOR OVERLAY 43, DYMAMIC DERIVATIVES
M43954	44	EXECUTIVE FOR OVERLAY 44, SUPERSOHIC WING "a" DERIVATIVES
M45955	45	EXECUTIVE FOR OVERLAY 45, WING AND WING-BODY. YAW AND ROLL DERIVATIVES
M46956	46	EXECUTIVE FOR OVERLAY 46, WING-BODY-TAIL DYNAMIC DERIVATIVES
M47857	47	EXECUTIVE FOR OVERLAY 47, TRANSVERSE-JET AEROUYNAMICS
M48860	48	EXECUTIVE FOR OVERLAY 48, LOAD EXPERIMENTAL DATA FOR MACH NUMBER
M49961	49	EXECUTIVE FOR OVERLAY 49, dump arrays
M50962	50	EXECUTIVE FOR OVErLay 50, AIrforl section aerodynamics
M51963	51	EXECUTIVE FOR OVERLAY 51, INITIALIZE ARRAYS
M52964	52	EXECUTIVE FOR OVERLAY 52, SUBSONIC LATERAL CONTROL/FLAP AERODYNAMICS
M53965	53	EXECUTIVE FOR OVERLAY 53, SUPERSONIC TRAILING EDGE FLAP ROLL AND YAW AERODYNAMICS
M54966	54	EXECUTIVE FOR OVERLAY 54, SUPERSONIC WING $\mathrm{C}_{\mathrm{m}_{\alpha}^{+}}$
M55967	55	EXECUTIVE FOR OVERLAY 55, JET Flap aerodynamics
M56870	56	EXECUTIVE FOR OVERLAY 56, MACH SHADOWING DATA

tagle 9 digital datcoh rouitme deschiption

table 9 digital d.atcor routine description

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
QUAD	0	COMPUTES PARAMETERS FOR QUADRATIC EXTRAPOLATION
RVALUE	1	TEST IF REAL VALUE IS LEGAL InPut
SDWASH	21	COMPUTES $\partial \varepsilon / \partial \mathrm{c}$ AND VISCOUS q / q_{∞} AT THE HORIZONTAL TAIL
SECI	50	READ AIRFOIL SECTION INPUTS
SECLEV	35	COMPUTES SECOND Level method module data
SECD	50	SET AIRFOIL SECTION MODULE OUTPUTS IN INPUT NAMELIST ARrAYS
SETUP1	2, 18	COMPUTES TPIG FUNCTIONS FOR LIFTING SURFACES
SETUP2	35	SETUP FOR TRANSONIC CONFIGURATION ANALYSIS
SIMUL2	38, 42, 47	ŞOLVES FOR WHERE TWO CURVES. INTERSECT
SIMUL 4	37	SOLVES 4 SIMULTANEOUS EQUATIONS USING DETERMINATES
SLEQ	50	SOLVES N SIMULTANEOUS EQUATIONS USING THE GAUSS-JORDAN METHOD
SLOPE	50	CALCULATES AIRFOIL SECTION $\mathrm{C}_{\ell_{\alpha}}, \mathrm{C}_{\mathrm{m}_{0}}$ AND $\mathrm{X}_{\mathrm{a}_{n}} \mathrm{C}_{\text {. }}$
SORTER	57	SORT EXTRAPOLATION MESSAGES BY FIGURE NUMBER
SPRYAW	53	CALCULATES SUPERSONIC ROLL AND YAW CHARACTERISTICS OF PLAIN T.E. FLAPS, SPOILERS AND DIFFERENTIALLY DELETED STABILIZERS
SSHING	41	CALCULATES SUPERSONIC HINGE MOMENT DERIVATIVES
SSSYM	41	CALCULATES SUPERSONIC $\triangle C_{L}$ AND ΔC_{m} FOR HIGH-LIFT AND CONTROL DEVICES
StgrxM	57	Store extrapolation message data
SUBHYW	45	CALCULATES SUBSONIC HORIZONTAL TAIL AND HORIZONTAL TAIL-BODY "p" AND "r" DERIVATIVES
SUBLAT	17	CALCULATES SUBSONIC AND TRANSONIC LATERAL Stability derivatives
SUBPAH	43	CALCULATES SUBSONIC AND TRANSONIC " q^{\prime} AND " α " DERIVATIVES FOR H.t.
SUBPAW	43	CALCULATES SUBSONIC ȦND TRANSONIC "q" AND " $\dot{\alpha}$ " DERIVATIVES FUR WING
SLCERYW	45	CALCULATES SUBSONIC WING AND WONG-BODY "p" AND "r" DERIVATIVES

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

$\begin{aligned} & \text { ROUTINE } \\ & \text { HAME } \end{aligned}$	OVERLAYS REFERENCED	UESCRIPTION
SUBWBT	46	CALCULATES SUBSONIC WING-BODY-TAIL "p" AND "r" DERIVATIVES
SUPBøD	19	CALCULATES SUPERSOHIC BODY $C_{L}, C_{D}, C_{m}, C_{L_{\alpha}}$, AND $C_{M_{\alpha}}$
SUPCLD	44	CALCULATES SUPERSONIC WING $\mathrm{C}_{\mathrm{L}_{\alpha}}{ }^{\text {d }}$
SUPCMD	54	CALCULATES SUPERSONIC WING C_{m}.
SUPCMO	20	CALCULATES SUPERSONIC CONFIGURATION C
SUPCMQ	43	CALCULATES SUPERSONIC WING $\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}$
SUPDRG	18	CALCULATES SUPERSONIC WING C_{D}
SUPHB	20	CALCULATES SUPERSONIC HORIZONTAL TAIL-BODY $\mathrm{r}_{L}, C_{\text {c }}, C_{L}$ AND $C_{m_{\alpha}}$
SUPHLD	43	CALCULATE $C_{L \dot{\alpha}}$ FOR SUPERSONIC HORIZONTAL TAILS
SUPHMD	54	CALCULATE $\mathrm{C}_{\mathrm{M}_{\alpha}}$ FOR SUPERSONIC HORIZONTAL TAILS
SUPHMQ	43	CALCULATES SUPERSONIC H.T. $\mathrm{C}_{\text {mq }}$
SUFHYW	45	CALCULATES SUPERSONIC HORIZONTAL TAIL AND HORIZONTAL-TAIL BODY "p" AND "r" DERIVATIVES
SUPLAF	23	CALCULATES SUPERSONIC VENTRAL FIN LATERAL STABILITY derivatives
SUPLAH	23	CALCULATES SUPERSONIC LATERAL STABILITY DERIVATIVES FOR HORIZONTAL TAILS
SUPLAT	23	CALCULATES SUPERSONIC LATERAL STABILITY DERIVATIVES FOR WINGS
SUPLAV	23	CALCULATES SUPERSONIC VERTICAI. TAIL LATERAL STABILITY DERIVATIVES
SUPLNG	27	CALCULATES SUPERSONIC WING $C_{L}, C_{L \alpha}$ AND $C_{m_{\alpha}}$
SUPLTG	22	CALCULATES SUPERSONIC HORIZONTAL TAIL $C_{L}, C_{\text {L } \alpha}$ AND $C_{m \alpha}$
SUPPAH	43	CALCULATES SUPERSONIC H.T. $\mathrm{C}_{\text {L }}$
SUPPAW	43	CALCULATES SUPERSONIC WING $\mathrm{C}_{L_{\text {g }}}$

TABLE 9 DIC.ITAL DATCOH ROUTINE DESCRIPTION

$\begin{gathered} \text { ROUTINE } \\ \text { HAME } \end{gathered}$	OVERLAYS REFERENCED	UESCRIPTION
SUPRYW	45	CC: ~!LATES SUPERSONIC WING AND WING-BODY "p" AND "r" DERIVATIVES
SUPWB	20	CALCULATES SUPERSONIC WING-BODY C_{L}, C_{D}, C_{L} AND C_{m}
SUPWBT	28	CALCULATES SUPERSONIC WING-BODY-TAIL AERODYNAMICS
SWITCH	0	SETS LOGIC FOR ASCENDINia OR DESCENDING ARRAYS FOR TLIN_X ROUTINES
SWRITE	12, 39	CONTROLS NUMERIC OUTPUTS FOR OUTPUT; WRITES BLANKS, NA OR HDM
SYNDIM	2	CALCULATES SYNTHESIS DIMENSIONS FOR BODY ANALYSIS
TABLEC	7, 20, 25	REGRESSION COEFFICIENTS FOR WBCMO
TABLES	7,24	READ MACH TABLES OF C EqUATION REGRESSION COEFFICIENTS
TBFUNX	0	TABLE LOOKUP FOR $Y=f(\mathrm{X})$; PROVIDES $\mathrm{dY} / \mathrm{dX}$
TBSUB	7, 24	SUBSONIC C $\mathrm{C}_{\text {d }}$ REGRESSION COEFFICIENT TABLES
TBSUP	7, 24	SUPERSONIC C_{D} REGRESSION COEFFICIENT TABLES
TBTRN	7, 24	TRAASONIC C C_{D} REGRESSION COEFFICIENT TABLES
TEST	1,34	NAMELIST NAME CHECKING PERFORMED IN INPUT
TEST®R	1	CHECK If NAMELIST NAME IS LEGAL InPUT USING NMTEST
THEßRY	50	maill logic routine for calculating airfoil section aerodynamics
TLINEX	0	LINEAR INTERPOLATION FOR $Y=\mathrm{f}(\mathrm{X} 1, \mathrm{k} 2)$
TLINVS	30	INTERPOLATES BETWEEN TABLES FOR FG6115
Tlinix	0	LINEAR INTERPOLATION FOR $\gamma=f(x)$
TLIN3X	0	LINEAR INTERPOLATION FOR $\gamma=f(x), x 2, x 3)$
TLIN4X	17,25,26,52	LINEAR INTERPOLATION FOR $Y=f(x 1, x 2, x 3, x 4$)
TLIPIX	43,44,45,54	LINEAR INTERPOLATION FOR A PACKED TABLE FOR $Y=f(x)$
TLIP2X	43,44,45,54	LINEAR INTERPOLATION FOR A PACKED TABLE FOR $\gamma=f(x), x 2)$
TLIP3X	43,44,45,54	LINEAR INTERPOLATION FOR A PACKED TABLE FOR $Y=f(x), x 2, x 3)$

table 9 digital datcom routine description

$\begin{aligned} & \text { ROLTINE } \\ & \text { HAME } \end{aligned}$	$\begin{gathered} \text { OVERLAYS } \\ \text { REFEREHCED } \end{gathered}$	UESCRIPTIO:
TRACMO	25	EXECUTIVE TRANSONIC B-W OR B-H $\mathrm{C}_{\mathrm{m}_{0}}$
tranac	25	computes transonic planform C_{L} by non-linear interpolation
tranco	24	Calculates transonic wing and hing-body C_{D}
TRANCM	25	calculates transonic wing and wing-body c_{m}
tranf	24	computes transonic ventral fin $\mathrm{C}_{\text {L }}$ by non-Linear interpolation
tranhb	24	EXECUTIVE FOR TRSQNJ CALCULATIONS
tranjt	47	hYpersonic transverse jet sizing calculations
trankb	24	EXECUTIVE FOR TRSGNI CALCULATIONS
trankg	24	CALCULATES WİGG $C_{L_{\alpha}}$ AT $M=1.4$ FOR TRSONI
TRAPZ	$\begin{aligned} & 4,6,7,9,19,23, \\ & 26,29,37,46,47 \end{aligned}$	Trapezoidal rulė integration routine
tranbt	$35 \cdots$	CALCULATES WING-BODY-TAIL $\partial \varepsilon / \partial \alpha, 9 / q_{\infty}$ ARID $C_{L}{ }_{\alpha}$ TRANSONICALLY
trhtcm	25	
TRIMRT	38	CALCULATES SUBSONIC TRIM WITH WING OR HORIZ
TRIMR2	38	calculates subsonic trim with an all movable horizental tal
TRIHT	24	CALCULATES HORIZONTAL TAIL $\mathrm{C}_{L_{\alpha}}$ AT MACH=1.4 FOR TRS $\mathrm{N}^{\text {a }}$,
TRNYRL	40	TRANSONIC LATERAL CONTROL/FLAP EFFECTIVENESS CALCULATIONS Wing and
trspni	24	CALCULATES TRANSOHIC WING $\mathrm{C}_{\mathrm{L}_{\alpha}}, \mathrm{C}_{\mathrm{L}_{\text {MAX }}}$, ${ }^{\alpha} \mathrm{C}_{\mathrm{L}_{\text {MAX }}}$; BODY $\mathrm{C}_{\mathrm{L}_{\alpha}}, \mathrm{C}_{\mathrm{m}_{\alpha}}$; WING AND WING-BODY $\mathrm{C}_{\mathrm{D}_{0}}$
trsonj	24	uses method of trsgni, but calculates using horizontal tail

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE HAME	OVERLAYS REFERENCED	UESCRIPTION
VFCDD	20	CALCULATES VENTRAL FIN CD_{0}
YFDRAG	8	CALCULATES VENTRAL FIN DRAG
VFLIFT	32	CALCULATES SUPERSONIC-VENTRAL FIN $\mathrm{C}_{\text {La }}$
vname	1	CHECK IF variable name is correct for input
VRTCD®	20	CALCULATES SUPERSONIC VERTICAL TAIL $\mathrm{C}_{\mathrm{D}_{0}}$
vtarea	56	EXECUTIVE FOR VERTICAL TAIL AREA SHADOWED BY MACH LINE CALCULATIONS
VTDRAG	8	CALCULATES SUBSONIC VERTICAL TAIL CDO
VTLIFT	32	CALCULATES SUPERSONIC VERTICAL TAIL CL_{α}
WBAER ${ }^{\text {a }}$	7	EXECUTIVE CCNTROL FOR WING-BODY AND HORIZONTAL TAIL BODY C_{L}, C_{D} AND C_{m}
WBCD	7	EXECUTIVE CONTROL FOR WING-BODY AND HORIZONTAL TAIL BODY $C_{\text {d }}$
WBCDL	7. 24	CALCULATES THE WING-BODY/HORIZONTAL TAIL BODY ${ }^{\text {C }}$ DL
WBCLB	-35	CALCULATES TRAISONIC WING-BODY $\mathrm{C}_{\ell_{B}}$
HBCil	7	CALCULATES SUBSONIC WING-BODY C_{m}
WBCMO	7, 20, 25	CALCULATES $\mathrm{C}_{\mathrm{m}_{0}}$ FOR WING-BODIES USING REGRESSION METHOD
WBCM1	25	CALCULATES $\mathrm{X}_{\mathrm{ac}}^{0} / \overline{\mathrm{c}}_{\mathrm{r}}$ FOR WING-BODIES
WBDRAG	7	CALCULATES SUBSOMIC WING-BODY $C_{\text {d }}$
WBLIFT	7	CALCULATES SUBSONIC WING-BODY C_{L}
WBTCDP	35	CALCULATES TRANSONIC WING-BODY-TAIL $C_{D_{0}}$
WBTRA	35	CALCULATES TRANSONIC WING BODY $C_{D_{L}}$
WBTRAN	25	CALCULATES $\left(C_{L_{\alpha}}\right)_{B(W)}$ AND $\left(X_{a c} / \bar{c}_{r}\right)_{B(W)}$ AT MACH=1.4 FOR TRANSONIC ANALYSIS
WBTAIL	10	CALCULATES SUBSONIC WING-BODY-TAIL AERODYNAMICS
WIMGCL	35	CALCULATES TRANSONIC WING C C_{L}
WINGYH	45	MAIf LOGIC FOR WING YAW DAMPING DERIVATIVES
WGEOTL	10	Calculates subsonic wing vortex interference effects on horizontal tail

table 9 digital dation -routine description

table 10 CONTROL DATA BLOCKS

$\begin{aligned} & \text { COMYON } \\ & \text { BLOCK } \end{aligned}$	VARIABLE - NAME	USE/PURPOSE
overly	NLDG	NUMBER OF LOGICAL VARIABLES IN COMMON BLOCK FLOLDG TO BE INITIALIZED FALSE
	NMACH	NUMBER MACH NUMBERS
	I	MACH NUMBER INDEX
	NALPHA	NUMBER OF ANGLES OF ATTACK
	IG	HAS SEVERAL USES: (1) GROUND HEIGHTS INDEX (2) Initialization switch overlay 51. if 1, initialize iom and COMPUTATIONAL BLOCKS, If 2, INITIALIZE FOR FLAP ANALYSIS IF 3, INITIALIZE FOR POWER ANALYSIS
	NF	HAS SEVERAL USES: (1) FLAP DEFLECTION INDEX (2) IF NEGATIVE, "TURNS-OFF" EXTRAPOLATION MESSAGES (3) FOR TRANSONIC ANALYSIS, LOOP INDEX. IF ≥-5, GET SUBSONIC AERO IF -6 OR -7, GET SUPERSONIC AERO (4) If NEGATIVE BYPASS READING EXPERIMENTAL DATA INPUTS
	LF	SET TO 1 IN OVERLAY 23 TO PRINT MESSAGE THAT H.T. IS OFF BODY AND NO LAT.-STAB PARAMETERS CALC.
	K	ALTITUDE INDEX
	NGVL.	CURRENT EXECUTING OVERLAY NUMBER
CASEID	IDCASE (74)	CHARACTERS OF CASE TITLE INPUT USING "CASEID"
	KOUNT	NUMBER OF NAMELISTS READ (MAX. 300)
	NAMSV (100)	ORDER OF NAMELISTS SAVED FROM PREVIOUS CASE

TABLE 10 CONTROL DATA BLOCKS

COMMON BLOCK	VARIABLE NAME	USE/PURPOSE
EXPER	IDIM KLIST NLIST (100) NNAMES IMACH MDATA KBDDY KWING KHT KVT KWB KDWASH (3) ALPDW ALPLW ALPDH ALPLH FLTC DPTI. BD WGPL	```DIMENSIONAL SYSTEM USED \(\quad 1=\mathrm{FT}, 2=\mathrm{IN}, 3=\mathrm{M}\); or \(4=\mathrm{CM}\). NUMBER OF \$EXPR - NAMELISTS (100 MAX) NUMBER CARDS READ FOR EACH \$EXPR -- AND MAC̈H NUMBER FOR NAMELIST NUMBER \$EXPR -- CARDS PRESENT MACH HUMBER INDEX OF CURREIT \$EXPR READ TRUE IF \$EXPR DATA FOR MACH NUMBER TRUE IF BODY EXPERIMENTAL INPUTS TRUE IF WING EXPERIMENTAL INPUTS TRUE IF H.T. EXPERIMENTAL INPUTS TRUE IF V.T. EXPERIMENTAL INPUTS TRUE IF WING-BODY EXPERIMENTAL INPUTS TRUE IF (1) \(d \varepsilon / d a\), OR (2) \(\varepsilon O R(3) q / q_{\infty}\) TRUE IF \({ }^{\alpha_{0}}{ }_{w}\) EXPERIMENTAL INPUT TRUE IF \(\alpha_{w}{ }^{*}\) EXPERIMENTAL INPIT TRUE IF \(\propto o_{H}\) EXPERIMENTAL INPUT TRUE IF \(a_{H^{*}}{ }^{\text {EXPERIMENTAL }}\) INPUT TRUE IF \$FLTCQN PRESENT \$DPTIN \$BDDY TRUE IF \$WGPLNF PRESENT```

TABLE 10 CONTROL DATA BLOCKS

TABLE 10 CONTROL DATA BLOCKS

(1) Glauert, H., "The Elements of Airfoil and Airscrew Theory," Cambridge at the University Press, 1948.
(2) Polhamus, Edward C., "Predictions of Vortex-Lift Characteristics Based on a Leading-Edge Suction Analogy." AIAA Paper No. 69-1133, October 1969.
(3) Polhamus, Edward C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy." NASA TN D-3767, December 1966.
(4) Stivers, Louis S., Jr. and Levy, Lionel. Le, Jr., "Longitudinal Force and Moment Data, at Mach Numbers from 0.60 tr. 1.40 for a Family of Elliptic Cones with Various Semiapex Angles." NASA TN D-1149, 1961.
(5) Spencer; Bernard, Jr. and Phillips, W. Pelham, "Effeets of Cross-Section Shape on the Low-Speed Aerodynamic Characteristics of a Low-Wave-Drag Hypersonic Body." NASA TN D-196, 1963.
(6) Spencer, Bernard, Jr. and Phillips, W. Pelham, "Transonic Aerodynamic Characteristics of a Series of Bodies Having Variations in Fineness Ratio and Cross-Sectional Ellipticity." NASA TN D-2622, 1965.
(7) Spencer, Bernard, Jr., "Transonic Aerodynamic Characteristics of a Series of Related Bodies with Cross-Sectional Ellipticity." NASA TN V-3203, 1966.
(8) McDonnell Douglas Corp.: USAF -tability and Control Datcom. Air Force Flight Dyn. Lab., U.S. Air Force, Oct. 1960. (Revised April 1976).
(9) Centry, A. E., Smyth, D. N., Oliver, W. R. , "The' Mark IV SupersonicHypersonic Arbitrary Body Program。" AFFDL-TK-73-159, 1973.

[^0]: L2-SECONO LEVEL mEThODS. OVERLAY 35

[^1]: ${ }^{*}{ }^{\circ} 0_{0}{ }_{\text {owbt }}$ IS AVAILABLE FFOM THE SECOND LEVEL ROUTINE OF CATCOM, SECTION 4.5.3.1, SUB ROUTINE WBTCDゆ.

