NGA.SIG.0012_2.0.0_UTMUPS
2014-03-25

NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY
STANDARDIZATION DOCUMENT
Implementation Practice

The Universal Grids and the
Transverse Mercator and Polar
Stereographic Map Projections

2014-03-25

Version 2.0.0

OFFICE OF GEOMATICS




This page is left intentionally blank.



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY
STANDARDIZATION DOCUMENT
Implementation Practice

(Revision of DMA Technical Manual 8358.2 dated 18 September 1989)

The Universal Grids and the
Transverse Mercator and Polar
Stereographic Map Projections

March 25, 2014



NGA.SIG.0012_2.0.0_UTMUPS

Table of Contents
Preliminaries and Ellipsoid

1. Generd
1.1 Introduction
1.2 Purpose and scope
1.3 Previous edition
1.4 What's new
1.5 What'sold
1.6 Meters, radians, Pi
1.7 Inverse trigonometric functions
1.8 Sign, Floor, Round

2. Reference Ellipsoid
2.1 Thereference ellipsoid
2.2 Longitude A and geodetic latitude ¢
2.3 Ellipsoid numerical example

2.4 Geocentric latitude ¢ and conformal latitude y

2.5 Illustration of ¢ and ¥

2.6 Given ¢, compute

2.7 Giveny, compute ¢

2.8 Given ¢, compute{cos y,sin y}
2.9 Given{cosy, sin y}, compute ¢
2.10 Using ¥ as asubstitute for y

Transverse Mercator and UTM

3. Basic Transverse Mercator
3.1 Definition of transverse Mercator
3.2 Given {A, ¢}, compute {X, y}
3.3 Notesto the devel oper
3.4 Forward mapping: anumerical example
3.5 Given {x, y}, compute {A, ¢}
3.6 Inverse mapping: a numerica example
3.7 Coverage of the ellipsoid
3.8 Index ¢
3.9 Computational accuracy

4. Transverse Mercator for other Ellipsoids
4.1 Everest 1956 (India) ellipsoid
4.2 Other "Everest" ellipsoids
4.3 Airy 1830 ellipsoid
4.4 Modified Airy elipsoid
4.5 Bessel 1841 (Ethiopia, Asia) ellipsoid
4.6 Bessel 1841 (Namibia) ellipsoid
4.7 Krassovsky 1940 ellipsoid
4.8 Helmert 1906 ellipsoid
4.9 Modified Fischer 1960 ellipsoid
4.10 WGS 72 ellipsoid
4.11 WGS 84 ellipsoid
4.12 GRS 80 ellipsoid
4.13 South American 1969 ellipsoid
4.14 Australian National 1966 €llipsoid

© ©O© © 0 00 0 0

=
o

11
11
11
12
12
12
13
13
13
14
14

15
15
15
16
17
17
18
18
19
19

20
20
20
20
21
21
21
22
22
22
22
23
23
23
24

2014-03-25



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

4.15 Indonesian 1974 ellipsoid 24
4.16 International 1924 ellipsoid 24
4.17 Hough 1960 ellipsoid 25
4.18 War Office 1924 ellipsoid 25
4.19 Clarke 1866 €llipsoid 25
4.20 Clarke 1880 (IGN) ellipsoid 26
4.21 Clarke 1880 dllipsoid 26
4.22 Coverage of the ellipsoid 26
4.23 Sphere 26
5. Transverse Mercator with Parameters 27
5.1 Preliminary general form 27
5.2 Origin 27
5.3 Given {Aorigina Porigin, Xorigin: YOrigin}v compute {Xcmv qu} 28
5.4 Genera form of transverse Mercator 28
5.5 Coverage of the ellipsoid 28
5.6 History and sources 28
5.7 Oldv. new 28
6. Transverse Mercator Auxiliary Functions 30
6.1 Point-scale 30
6.2 Convergence-of-meridians 30
6.3 Given {A, ¢}, compute {o, v} — basic case 30
6.4 Given {A, ¢}, compute {o, vy} — general case 31
7. Universal Transverse Mercator (UTM) 32
7.1 Definition of UTM 32
7.2 Examples of computing {X, vy, o, v}, given {A, ¢, Z} 32
7.3 Examples of computing {1, ¢}, given {Z, X, y} 33
7.4 Administrative rules 33
7.5 Given {A, ¢}, compute Z 34
7.6 Hierarchy of subroutines 34
Polar stereographic and UPS
8. Basic Polar Stereographic 35
8.1 Given{A, ¢}, compute{x, Y, o, y} 35
8.2 Given {x, y}, compute {A, ¢} 35
9. Polar Stereographic with Parameters 37
9.1 Genera form (ko) 37
9.2 Origin 38
9.3 Given {Aorigina ‘porigin: Xorigim yorigin}y CompUte {XpoIEy ypole} 38
9.4 Other meanings of "Origin" 38
9.5 Genera form (ko, arbitrary origin) 39
9.6 Standard parallel 39
9.7 Given ¢4, compute kg 39
9.8 Given kg, compute ¢, 39
9.9 Genera form (¢4, arbitrary origin) 39
9.10 Examples of conversions between ¢, and kg 40
10. Universal Polar Stereographic (UPS) 41

10.1 Definition of UPS 41



NGA.SIG.0012_2.0.0_UTMUPS

10.2 Examples of computing {X, v, o, v}, given {A, ¢, Z}
10.3 Examples of computing {7, ¢}, given {Z, X, y}

10.4 Administrative rules

10.5 Hierarchy of subroutines

MGRS and USNG

11. Military Grid Reference System (MGRYS)
11.1 Character string for the UTM portion of MGRS
11.2 Lettering scheme “AA”
11.3 Lettering scheme “AL”
11.4 Which lettering scheme to use
11.5 L ettering schemes on old maps
11.6 Precision and digits
11.7 Latitude band letter
11.8 Latitude band letter example
11.9 Character string for the UPS portion of MGRS
11.10 Lettering scheme “UPS north”
11.11 L ettering scheme “ UPS south”
11.12 Precision and digits
11.13 Conversion of MGRS to UTM or UPS
11.14 MGRSto UTM conversion example
11.15 Legacy tables for the |ettering schemes

12. Topicsin MGRS
12.1 Formal definition of MGRS
12.2 Administrative rules
12.3 Rounding v. truncating
12.4 Point v. area
12.5 Latitude band letter — efficiency — northern hemisphere
12.6 Latitude band letter — efficiency — symmetry of tables
12.7 Latitude band letter — efficiency — examples
12.8 Latitude band letter — efficiency — southern hemisphere
12.9 Latitude band letter — leniency
12.10 Latitude band letter — leniency rule
12.11 MGRS-UTM hybrid

13. MGRS Quick-Start
13.1 Given Lon./Lat., compute MGRS
13.2 Given MGRS, compute Lon./Lat.

14. United States Nationa Grid
14.1 Definition of USNG
14.2 USNG example

Plots and References

15. Diagramsfor UTM, UPS and MGRS
16. References

41
41
42
42

43
43

45
45
45
46
46
46
47
48
48

51
51
51
51
51
52
53

G

55

56
56
57

59
59
59

61
86

2014-03-25



NGA.SIG.0012_2.0.0_UTMUPS

Symbol
a

ag, a4...
A2, A4...
b

b,, bs...
B2, B4...

N<X< XXs<cgpguniogx

>~ 0 <

)
o

€ x s § 3

List of Symbols

Description

Semi-major axis of areference ellipsoid

Coefficientsin the series for forward transverse Mercator
Coefficientsin the series for forward transverse Mercator
Semi-minor axis of areference ellipsoid

Coefficientsin the series for inverse transverse Mercator
Coefficientsin the series for inverse transverse Mercator

Size of one degree, in radians

Flattening of the reference ellipsoid

Inverse flattening; reciprocal flattening

(various functions for forward mapping equations)

(various functions for inverse mapping equations)

Scale factor mandated for the central meridian or for the Pole
(an intermediate variable for some latitude conversions)

(an intermediate variable for some latitude conversions)
Meridional isoperimetric radius

(an intermediate variable for basic transverse Mercator)

(an intermediate variable for basic transverse Mercator)

(an intermediate variable depending on ¢)

Map projection plane abscissa; distance on the horizontal axis; Easting
First of three Cartesian coordinates for 3D Euclidean space
Map projection plane ordinate; distance on the vertical axis; Northing
Second of three Cartesian coordinates for 3D Euclidean space
Third of three Cartesian coordinates for 3D Euclidean space

Convergence-of-meridians angle; grid declination
(First) eccentricity of the reference ellipsoid
Longitude

Longitude of the central meridian

Pi, theratio of acircle' s circumferenceto its diameter
Local scale (factor)

Geodetic latitude; latitude

Conformal latitude

Geocentric latitude

2014-03-25

Section(s)
2.1

3.2

4 intro

21

35

4 intro

16

21

21
3.2,6.3,8.1
35,82
51,91

2.8

2.9

3.2

3.2

3.2

2.2
2.1,51,81..
21
2.1,51,81..
21

21

6.3,81
21
22
51,91
16
6.3,81
22
24

24



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

1. General

m 1.1 Introduction

Earth features are commonly referenced by geographic coordinates — longitude and latitude. However, these coordi-
nates are not suitable in all situations to report positions or to calculate distances or directions. To perform these
functions conveniently, grids and grid coordinate systems have been invented. A national grid is devised by a national
authority and covers a single country (or part of it). The universal grids, Universal Transverse Mercator (UTM) and
Universal Polar Stereographic (UPS), were devised by the U.S. Department of Defense (DoD) and taken together
cover the whole Earth. The Military Grid Reference System (MGRS) is the pair, UTM and UPS, after some reformat-
ting (e.g. lettering) is applied to each.

m 1.2 Purpose and scope

This document defines the UTM, UPS and MGRS systems of coordinates and provides some information toward their
understanding and use in surveying, cartography, and geographic-information analysis.

Mainly, though, this document provides guidance to DoD and DoD contractors for the software implementation of
algorithms to convert between longitude/latitude, UTM or UPS, and MGRS coordinates. As a necessary step toward
that end, this document provides guidance for the software implementation of the transverse Mercator and polar
stereographic map projections. These map projections are endowed with parameters for genera utility, of which
UTM and UPS are particul ar instances.

It should be noted that the previous edition, [3], had these same purposes: to define UTM and to provide the formulas
for its implementation in software. Moreover, this should be accomplished without partiality to a particular program-
ming language or software environment. EXxisting software, even if it were open source and government provided
(e.g. GeoTrans) and most modern and up-to-date, would not be a substitute for this document. Management of
specific DoD procurements is outside the scope of this document. Likewise also are the policies and procedures for
quality assurance of these procurements. Yet, a general recommendation can be stated: if the above conversions are
to be implemented anew, or if existing software is to be modified (for the benefits below or for other reasons), then
this document should be used to direct the development or redevelopment. This will yield the benefits explained
below under “What’s new”.

A companion to this document is NGA Standardization Document NGA.STND.0037_2.0_GRIDS “Universa Grids
and Grid Reference Systems” [11]. DoD mapping and charting production elements should refer to it for guidance on
the proper depiction of UTM and UPS grids and MGRS labels on standard products.

Although some explanations are offered in defense of what is new, this document is not designed as a tutorial. It is
recommended to consult the map projection literature for the meaning and usefulness of grid coordinates in general
and UTM, UPS and MGRS coordinates in particular.

m 1.3 Previous edition

This document replaces technical manua DMA TM8358.2 Edition 1, “The Universal Grids: Universal Transverse
Mercator (UTM) and Universal Polar Stereographic (UPS)”, dated 18 September, 1989. Chapters 1-4 of the 1989
technical manual are superseded by this document. Chapter 5 dealt with datum transformations, which is a separate
topic and is not included in this document. Datum transformations are included in Edition 3 and Edition 4 (in prepara-
tion) of [12].

m 1.4 What’s new

The transverse Mercator map projection formulas in Section 3 are new, as explained in Subsections 5.6 and 5.7. The
new formulas provide improved efficiency and expanded coverage of the ellipsoid. Using them, the software is
shorter and simpler to write, and, by implication, less likely to have bugs.

New to this document are several sections on MGRS (Sections 11, 12, and 13). The one-dimensional tables in
Subsections 11.2 and 11.3 offer simpler logic for grid-square lettering than the traditional two-dimensional tables in
[2], but produce the same result. Some secondary matters concerning MGRS, namely non-WGS-84 lettering
(Subsection 11.4) and latitude-band-letter leniency (Subsection 12.9), have remained ambiguous (not standardized)
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for years. This is corrected here for the first time in a DMA, NIMA, or NGA document. “MGRS Quick-start”
(Section 13) may be read after reading Sections 1, 2, and 3. Because it is so close to MGRS, there is a brief section
(Section 14) onthe U.S. National Grid (USNG).

This document advocates layering of software modules, so that, for example, MGRS is alayer over UTM; UTM isa
layer over transverse Mercator with parameters; and the latter is a layer over basic transverse Mercator. Then, within
each of UTM, UPS and MGRS, some rules are described as “administrative rules’ (e.g. Subsection 7.4). These are
usage oriented and not required by the theory. The recommendation is to not bundle these with the theory-required
formulas and logic, but make them a separate layer.

As a help to developers of geographic metadata formats and as a furtherance of general functionality, map projection
parameters for the transverse Mercator and polar stereographic projections are discussed in detail in Sections 5 and 9.
This yields software that is capable of both grid calculations and general cartography (map-sheet design) — a boon to
the desired consistency between these capabilities.

It is hoped that the plots and diagrams in Section 15 (all newly produced) will be useful to many. They illustrate the
principlesin this document.

= 1.5 What's old

The new formulas for transverse Mercator and UTM are consistent with the previous edition formulas where they
overlap. MGRS-needed UTM calculations, for example, are unchanged.

m 1.6 Meters, radians, pi

All lengths and distances in this document are given in meters. Readers interested in English units should be aware
that the international foot and the U.S. survey foot are slightly different. For both, a foot is 12 inches. For the U.S.
survey foot, one meter equals 39.37 (U.S. survey) inches exactly; for the international foot, one (international) inch
equals 2.54 centimeters exactly.

All angles occurring in the formulas are assumed to be in radians. One radian equals % degrees and one degree

equals % radians. When it is convenient to refer to an angle by its degree-equivalent, the notation “deg” isused asa

For example, A =23 deg = B An angle occurring in a numerical table will bein

multiplier. Itsvalueis deg= % 50"

5
degrees, if its column heading includes the notation “(deg)”.

If the programming language does not have a built-in function for 7z, the developer may establish a value for it with a
statement like pi = 4 xatan (1) taking the benefit of the arc-tangent function, which might be spelled “atan”.
This statement provides al the digits for 7 within the chosen arithmetic precision type — single, double, or other type.

m 1.7 Inverse trigonometric functions

The (circular) trigonometric functions cosine (cos), sine (sin) and tangent (tan) take a single argument in radians.
Their inverses are defined:

arccos(cost) = 0, ifO0<O<nr

i . X /4 T
arcsin(sing) =6, if —<0=<-—
2 2

T
arctan (tan@) =0, if —<0<—
2 2

The following function is needed because some angles have values in al four quadrants and because the determina-
tion of a first-quadrant angle is numerically more robust if its cosine and sine are given than if its tangent is given. It
is called the two-argument version of arc-tangent and satisfies these identities:

arctan (cos6, sing) =6, if —r<O0<n
arctan(ax, ay)=arctan(x, y), if xandyareanyrea numbersanda>0 @
arctan(x, y) = arctan(z), if x > 0and yisany real number

X

The order of the arguments for arctan as they appear in Eq. (1.1) and in [18] might be called “x beforey”. The other

9
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convention might be called “numerator before denominator” and is the convention used in Fortran and C, where the
two-argument version of arc-tangent function is spelled “atan2”. Itsrelationship to arctan in this document is:

arctan(x, y) = aan2(y, X)
Some computer languages might not have the inverse hyperbolic tangent. Itis:
1 1+x
arctanh (xX) = — Ln[—)
2 1-x

where Ln isthe natural logarithm function, that is, logarithms to the base 2.71828 ...

m 1.8 Sign, Floor, Round

Signum (sign) is the function that returns + 1 if the argument is positive, - 1 if the argument is negative, and O if the
argument is zero.

Floor is the function that returns the greatest integer less than or equal to the given number. Some examples are:
Floor(1.1) =1, Foor(1) =1, Floor(-1)=-1, and Floor(-1.1) = -2

Round is the function that returns the integer nearest to the given number, with half-integers rounded up. It can also
be defined:

1
Round (x) = Floor [x+ E)

10



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

2. Reference Ellipsoid

Essential for the construction of the universal grids are a reference ellipsoid and the concepts of longitude and lati-
tude, which are based upon it. These and related matters are discussed in this section.

m 2.1 The reference ellipsoid

In this document, the Earth is represented by a reference ellipsoid, defined as a surface whose points’ three-dimen-
sional Cartesian coordinates { X, Y, Z} satisfy the equation:
X2 yz 72
—+—+—=1 @
a a b
where a and b are constants called the semi-major and semi-minor axes, respectively. It isrequired that a>b. The
quantities a and b determine the flattening, f, and the eccentricity-squared, €2, as follows:

a-b b
f=——=1-—

a a
a2 - b? b)2
=1-|-
a a
The flattening and the eccentricity-squared are inter-convertible as follows:

=f@2-1
e

1+41-¢

Instead of the pair {a, b} as the defining parameters, the reference ellipsoid can be defined by {a, f}, {a, f‘l}, {a, €}, or

&=

f=

{a, €} inwhich case bis given by either of these equations:

b=a(@l-f)

b=ay1-€

The reference elipsoid is a mathematical idealization. How it is attached to the physical Earth is outside the scope of
this document. For atreatment of this topic in general, see the geodetic literature. For its part in the establishment of
some modern terrestrial reference systems see [12] and [13].

m 2.2 Longitude A and geodetic latitude ¢

As stated above, a point in space lies on the reference ellipsoid if its coordinates { X, Y, Z} satisfy Eq. (2.2). Equiva
lently, a point in space lies on the reference ellipsoid if its coordinates {X, Y, Z} can be generated by the following

formulas:
a
= — (Cos¢) (cosA)
w
a B
Y = —(cos¢) (SinA) 3
w
a(1-¢)
Z=———(sing)
w
where

w=1v1-€sn’¢ @

and A and ¢ are any two real numbers. The quantity A, which is longitude in radians, can be restricted to any interval
of length 27 such as -7 <A <z, The quantity ¢, which is geodetic latitude in radians, should be restricted to the
interval -n/2 <¢ <n/2.

In this section, the term for ¢ is “geodetic latitude”, to distinguish it from other quantities that are 0° at the equator
and +90° at the Poles (see Subsection 2.4). After thi151 section and in keeping with standard usage in geography and
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cartography, geodetic latitude is shortened to “latitude”.

m 2.3 Ellipsoid numerical example

The International ellipsoid (1924) is defined by a = 6378388 meters and f~1 = 297.000000. Using the formulas in
Subsection 2.1, the other parts of this ellipsoid are:

Nane nane International 1924

NGA two- | etter code twol et I'N

inverse flattening 1/ f 297..000000000000000
flattening f 0. 00336700336700336700
eccentricity-squared e? 0. 00672267002233332200
eccentricity e 0. 0819918899790297674
sem -mgj or axi s a 6378388. 00000000000
sem -m nor axis b 6356911. 94612794613

A particular point on the International ellipsoid has longitude A = 23 deg = 21%3 and geodetic latitude ¢ = 47 deg = %.

Using Egs. (2.3 and 2.4), the Cartesian coordinates { X, Y, Z} of the particular point are:

X =4011461. 001914537
Y =1702764. 171519670
Z = 4641850. 497100156

m 2.4 Geocentric latitude ¥ and conformal latitude y

As stated above, each point on a reference ellipsoid has a longitude A and geodetic latitude ¢. These quantities are
sufficient to locate the point without ambiguity. Other quantities needed in this document are the geocentric latitude
¥ and the conformal latitude y, whose dependencies on ¢ are given by:

tany = (1-€)tang (5)
arctanh(sin y) = arctanh (sin¢) — earctanh (esing) (6)
At the Equator, ¢ =¥ = y =0, and at the north Pole, ¢ =y = y =90deg. For the southern hemisphere, changing

¢ - (—¢) implies ¥ - (—y) and y - (—x). The recommended steps for converting between ¢ and y are given in
Subsections 2.8 and 2.9.

m 2.5 lllustration of ¢ and ¢

The following illustrates the concepts of reference ellipsoid, geodetic latitude ¢ and geocentric latitude . The
reference ellipsoid (with greatly exaggerated flattening) is shown by its intersection with the XZ plane, i.e. the plane of
the prime meridian (A = 0). Point P is on the prime meridian. The line PQ is perpendicular to the ellipsoid at P. Then
¢ = LPQA isthe geodetic latitude of P and ¢ = L POA is the geocentric latitude of P.

z
A

v )
/Q > X
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m 2.6 Given ¢, compute ¢
This subsection gives the formulas to convert geodetic latitude ¢ to geocentric latitude .

Eq. (2.5) succinctly states the relationship between ¢ and i, but a computational algorithm is given by:

T o cot ¢ ’ T

=——actan| ——|, [ > —

G Bt L
¥ =arctan((1-€)tang), if js¢sz
4 4

- . cot ¢ i -

= — —arctan , [ < —

v 2 [1—e2] ¢ 4

where arctan is the inverse tangent function and cot is the cotangent function. The latter is defined cot ¢ = tan (g - ¢)

for the occasion that it is not available in the programming language. The choice of endpoint % =45deg and its

negative for the above intervals of ¢ is mostly arbitrary; other choices such as 50 deg and 1 radian would work just as
well.

Let the function defined by the above formulas be given the name “PhiToPsi” so that the aboveis equivalent to:
¥ = PhiToPsi (¢)

m 2.7 Given y, compute ¢

This subsection gives the formulas to convert geocentric | atitude y to geodetic latitude ¢.

0= atm(i-Gjeos). it
tany 7 i
¢=arctan(—), it —=y=-
_e 4 4

- v/l
¢:?—arctan((1—e2)cottp), if ¢p<7
Let the function defined by the above formulas be given the name “PsiToPhi” so that the aboveis equivalent to:
¢ = PsiToPhi ()

See comments in the previous subsection.

m 2.8 Given ¢, compute {cos y, Sin y}
Eq. (2.6) succinctly states the relationship between ¢ and y, but the need for y later in this document is only through
its cosine and sine. Therefore, the conversion from ¢ to y as needed in this document is the following:
2cos¢
CoSy = . -
A+sn¢)/P+(1-sing)P
1+sing)/P-(1-sing)P
X =
1+sing)/P+(1-sing)P

sin
where
. 1+esing\%?
P =exp(earctanh(esing)) = [—)
l1-esing

See Subsection 1.7 for the definition of arctanh. Of the two formulas given for P, the one using arctanh is preferred.
Let the function defined by the above formulas be given the name “PhiToChi” so that the above may be summarily
written:

(cos y, sin y) = PhiToChi (¢)

13



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

m 2.9 Given {cos y, sin y}, compute ¢
The procedure to compute geodetic latitude ¢ given the cosine and sine of the conformal latitude y is the following:
¢ = arctan (cos¢, sing)
where cos ¢ is computed from sin ¢ and P by:
1+sing)/P+(1—-sing)P

COS¢p = cos y
2
where sin ¢ isthe limit (within desired resolution) of s;, S, Sz, ... and P is the corresponding limit of Py, Py, P, ...
and where:
s =siny
L+siny) Pnz—(l—sin)()
Sl =

(L+siny) P2+ (1-siny)

1+es,)\%?
Pn:exp(earctanh(esn)):( )

l-es

Of the two formulas given for P,, the one using arctanh is preferred. Let the function defined by the above formulas
be given the name “ ChiToPhi” so that the above conversion is written:

¢ = ChiToPhi (cos v, sin y)

m 2.10 Using ¢ as a substitute for y

The difference between ¢ and y is small and ¢ < ¢ conversions are faster than ¢ < y conversions. Software develop-
ers could substitute ¢ for y in situations that require extreme performance and loose accuracy. Numerical investiga-
tion of the loss of accuracy would be an obligation of the developer, but hereis some initial guidance:

For an ellipsoid no flatter than the ellipsoids in Section 4, the worst case occurs for the Clark 1880 ellipsoid at
¢ = +60.1184 deg where | y — | reaches a maximum of 0.5207 arc-seconds. An efror in y of some amount under
one second (e.g. because the formulafor ¢ is used instead) propagates to an error in ¢ of roughly the same amount.

14
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3. Basic Transverse Mercator

One of the universal grids, namely Universal Transverse Mercator (UTM), is based on the transverse Mercator map
projection. This section gives the formulas for transverse Mercator in its basic form. Later in Section 5, various
parameters such as central meridian and central scale factor will be introduced. They will enable transverse Mercator
to be offered in its commonly-used general form.

The theory of map projections and the theory of conforma mapping between surfaces are outside the scope of this
document. However, one idea from these theories is presented. The formulas for transverse Mercator will be new,
and the theoretical definition of transverse Mercator in Subsection 3.1 is appropriate as a bridge between old, e.g.
[16], and new.

In this section, any constant dependent on areference ellipsoid will have the value pertaining to the WGS 84 dllipsoid.
Transverse Mercator for other reference ellipsoidsis given in Section 4.

m 3.1 Definition of transverse Mercator
Transverse Mercator in its basic form is defined by the following requirements:

e Requirement 1. The prime meridian, i.e. the meridian at longitude A = 0, is portrayed on the {x, y} plane of the map
projection as a segment of the vertical line x=0.

e Requirement 2: The point of intersection of the prime meridian with the Equator corresponds to the point
{x, y} = {0, 0} on the map projection plane.

e Requirement 3: If two pointslie on the prime meridian, the distance between them on the map projection plane
will be the same as the length of meridional arc joining them on the reference ellipsoid. In other words, “distance
ispreserved” (on the prime meridian).

e Requirement 4. The map projection is conformal

It is notable that the only requirement dealing with points not on the prime meridian is Requirement 4. After the
prime meridian’s points are properly placed, Requirement 4 is enough to determine the map projection’s placement of
all other points.

For readers who are familiar with transverse Mercator or who have looked ahead to Section 5, it can be stated that the
parameter choices implied by the above definition are (i) a central meridian of longitude O deg, (ii) a central scale
factor of 1.0000, (iii) an “Origin” point given as longitude 0deg and latitude 0deg, and (iv) a False Easting and a
False Northing of 0 mE and O mN, respectively, assigned to that origin. Thisisthe basic form of transverse Mercator.
The formulas for transverse Mercator to follow are new (in a sense to be explained), but they adhere to the above
definition, which is not new (in effect). The above definition isimplicit in the map projection literature, and both old
and new formulas are based upon it. A discussion of the relationship of this document to other authorities on trans-
verse Mercator must await the conclusion of Section 5.

m 3.2 Given {a, ¢}, compute {X, y}

This subsection gives the forward mapping equations for the basic form of the transverse Mercator projection. Given
the longitude A and latitude ¢ of a point on the reference ellipsoid, the functions f; and f,, specified below, produce
the easting x = f1(4, ¢) and northing y = f,(A, ¢) of the corresponding point on the map projection plane. They satisfy
the requirements of Subsection 3.1.
x=f1(4, ¢)
= R4 (U+ axsinh(2 u) cos(2V) + a4 sinh(4 u) cos(4 V) + ... + a;2 Sinh(12 u) cos(12 v) )
M
y= 24, ¢)
= R4 (V+ apcosh(2u) sin(2v) + a4 cosh(4 u) sin(4v) + ... + a;» cosh(12 u) sin(12v) )
where cosh and sinh are the hyperbolic cosine and hyperbolic sine, respectively, and R, and ay, a4, as, ag, a;0 and a;»
are constants, and where u and v are determined by:

u=arctanh ((cos y) (sind))

v = arctan ((cos y) (cosA), siny) ®)
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and cos y and sin y are computed according to Subsection 2.8, i.e. the function PhiToChi is applied:
(cos y, sin y) = PhiToChi (¢)
For the WGS 84 ellipsoid (a = 6378137, f 1 = 298.257223563), the numerical values of the constants are:

Ry =6367 449. 1458234153093 meters

a,=8.3773182062446983032 E -04 (unitless)

a,=7.608527773572489156 E -07 (unitless)

as=1.19764550324249210 E -09 (unitless) 9)
ag=2.4291706803973131 E-12 (unitless)

a0=5.711818369154105 E -15 (unitless)

ap=1.47999802705262 E -17 (unitless)

The quantity R4 has a name — the meridional isoperimetric radius. It is the radius of a semicircle having the same
arclength as a meridian. Its notation, R4, was chosen after seeing that notations Ry, R,, Rz were adopted by [10] and
[12] for thetri-axial arithmetic-mean radius, the authalic radius, and the isovolumetric radius, respectively.

= 3.3 Notes to the developer

The previous subsection is complete for the mathematics of the forward mapping equations of the basic form of
transverse Mercator. This subsection offers additional information that might be helpful.

A series of numbers should be added from small (absolute values) to large, so as not to risk losing the full contribution
of the small numbers to the sum. Therefore, the series for x in Eq. (3.7) should begin with the last term and add each
preceding termin turn. Likewise for the seriesfory.

Simplicity of computer code and high performance of computer code are competing requirements for algorithm
design; it is usually not possible to achieve both. This document leans toward the former, but not exclusively, and the
following improvement for performance (speed) might be of interest to some developers. Toward the numerical
outcome required by Eq. (3.7), after cos(2v) and sin(2v) have been computed, the remaining multiple-angle sines and
cosines can be computed by:

cos(4v) = 2cos’(2v) — 1
sin(4v) =2 cos(2v) sin(2Vv)

€0os(6 V) = cos(4 v) cos(2V) — sin(4v) sin(2v) (10
Sin(6v) = cos(4v) sin(2v) + cos(2Vv) sin(4v)
and the pattern continues with:
cos(8V) = 2cos’(4v) — 1
sin(8v) =2 cos(4v) sin(4v)
€o0s(10Vv) = cos(8 V) cos(2Vv) — sin(8v) sin(2 v) 1)
sin(10v) = cos(8 V) Sin(2V) + cos(2V) sin(8V)
cos(12v) = 2cos?(6Vv) — 1
sin(12v) = 2 cos(6 V) sin(6 V)
For the hyperbolic functions, the formulas are:
cosh(4u) = 2cosh?(2u) - 1
sinh(4 u) = 2 cosh(2 u) sinh(2 u) (12)

cosh(6 u) = cosh(2 u) cosh(4 u) + sinh(2 u) sinh(4 u)
sinh(6 u) = cosh(4 u) sinh(2 u) + cosh(2 u) sinh(4 u)
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and the pattern continues with:

cosh(8u) = 2cosh?(4u) — 1

sinh(8 u) = 2 cosh(4 u) sinh(4 u)

cosh(10 u) = cosh(2 u) cosh(8 u) + sinh(2 u) sinh(8 u)

sinh(10 u) = cosh(8 u) sinh(2 u) + cosh(2 u) sinh(8 u)

cosh(12 u) = 2 cosh?(6u) — 1

sinh(12 u) = 2 cosh(6 u) sinh(6 u)
It is in the nature of these mathematical functions that Egs. (3.10 and 3.12) look so much alike as do Egs. (3.11 and
3.13). A careful look at the formulas for cos(6 v), and cosh(6 u) will reveal that they are not totally alike. The aboveis
correct, despite looking like thereisamistakein sign.

(13)

Eq. (3.7) as written above implies 24 calls to trigonometric functions (circular or hyperbolic). With the use of Egs.
(3.10 through 3.13), this is reduced to merely four calls — cos(2v), sin(2v), cosh(2u) and sinh(2u). The time for the
extra additions and multiplications is minuscule compared to the performance savings of fewer calls to trigonometric
functions. The extra effort to use Egs. (3.10 through 3.13) will not suit the needs of all software devel opers.

It may be argued that for practical applications of transverse Mercator and UTM, Eq. (3.9) contains an excessive
number of digits. However, developers are encouraged to cut and paste the numbers as given into their code. The
computer memory locations must be filled somehow; the extra digits cause no performance degradation; and they are
not entirely inconsequentia in software-testing.

The transverse Mercator projection is symmetric about the Equator and about the prime meridian. These symmetries
are contained in Egs. (3.7, 3.8, and 3.9), which therefore apply to al four quadrants, not merely to A > 0 with ¢ > 0.
There is no need for additional code to convert points in other quadrants. Additionally and likewise, Egs. (3.7, 3.8,
and 3.9) get correct the (lesser known) symmetry about the meridians A = =90 deg in the polar regions.

Lastly, some developers might be interested in a trade-off between accuracy and speed. Egs. (3.10 to 3.13) were an
attempt to meet the devel oper’s need for speed. They do so without loss of accuracy. If that effort isinsufficient, it is
admitted that fewer terms of Eq. (3.7) would be possible under a more lax accuracy requirement (Subsection 3.9) or a
more restricted reference-ellipsoid coverage requirement (Subsection 3.7), or both.

= 3.4 Forward mapping: a numerical example

Let {4, ¢} = {—10deg, 3 deg} define a point on the WGS 84 ellipsoid. Then cos y = 0.998647785036631316 and
sin y = 0.0519865505821477812 by Subsection 2.8. Then u=-0.175183729646051084 and

v = 0.0528108539283539197 by Eqg. (3.8). Finally, x=-1117373.87527102019 and y = 336 868.939627688401 by
Eq. (3.7).

m 3.5 Given {x, y}, compute {7, ¢}

This subsection gives the inverse mapping equations for the basic form of the transverse Mercator projection. Given
the easting x and northing y of a point on the map projection plane, the functions g, and g,, specified below, produce
the longitude A and | atitude ¢ of the corresponding point on the ellipsoid.

A=0; (X, y)=arctan(cosv, sinhu) (14)
where u and v are computed below;

¢ =0 (X, Yy)=ChiToPhi(cos y, siny)
where the function ChiToPhi is defined in Subsection 2.9 and cos y is computed from u, and v as follows:

sinhu

A= (coshu) (sina)
unless (sinA) iscloseto zero, that is, unless:

|[A] <00lor |[A+m]| <0.0lor |[A+27] <0.01

in which case the calculation should be:
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Y sinh? u + cos? v

coshu

oS y =

and sin y is computed

sinv

siny =
coshu

where u and v are computed from x and y as follows:

X 2X 2y 4x 4y 12 x 12y
u= —+ bzsinh[—) cos(—] + b4sinh(—) cos{—] + ..+ blzsinh(—) cos(—)
R4 R4 Ry Ry Ry Ry Ry

y 2x\  (2y 4x\  (4y 12x\  (12y
v=—+ by cosh[—) sm[—) + by cosh(—) sm(—) + ...+ b cosh(—) sm[—)
Ry Ry Ry Ry Ry Ry Ry
where R4 is defined in Subsection 3.2 and by, by, ... by, are unitless constants. In the case of the WGS 84 ellipsoid,
the values are:

b, = -8.3773216405794867707E- 04
b, = -5.905870152220365181E- 08
bs = -1.67348266534382493E- 10
bg = -2.1647981104903862E- 13

bjo = -3.787930968839601E- 16

b, = -7.23676928796690E- 19

Longitude at the Poles is ambiguous, i.e. not well defined. For the forward mapping equations (Section 3.2) this was
not a problem. The formulas there will correctly convert ¢ = +90 deg no matter what numerical value is used for A.
In this subsection, the ambiguity is a problem. The attempted computation of A in Eq. (3.14) will fail when the math-
library routine for arctangent encounters arctan(0, 0). This will happen at a Pole, where u=0 and v=+x/2, derived
from x=0and y=+R4(7/2). To get around this, let the software define a constant, A0 = O (suggested), and execute

A=2Apgeif u=0andv=+x/2, and execute Eqg. (3.14) otherwise.
See the notes to the developer in Subsection 3.3.

3.6 Inverse mapping: a numerical example

Let the reference ellipsoid be WGS 84 and let x = 400000 and y = 7000000 be given. Then, in order of calculation,
u = 0.0628815005045996857, v =1.09865807573984195, A =0.137482740770994122 which in degrees is
7.87718080206913254, cos y = 0.458217667193810883, and sin y = 0.888840013428435821. Then, by the methods

of Subsection 2.9, ¢ = 1.09753532362197469 which in degreesis 62.8841419100641123.

3.7 Coverage of the ellipsoid

For reasons beyond the scope of this document, the forward mapping equations in Subsection 3.2 are not valid for the
entire ellipsoid (i.e. the WGS 84 ellipsoid, in this section). An area surrounding each of the two points
{A, ¢} = {x90deg, 0deg} must be omitted. Without trying to make the omitted area as small as possible, it is
possible and permitted to specify the region of validity as those points {4, ¢} which satisfy one or more of the inequali-
tiesin thefollowing list:

|A| <70deg

|A—m| <70deg

|A+7| <70deg

g
——¢<70deg
2

/e
¢+ — <70deg
2
(Recall from Subsection 1.6 that deg = /180 isamultiplier so that 70 deg = 7x/18). In words, by the above rule, any
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point to be placed on a transverse Mercator map must be within 70° of longitude to the prime or anti-prime meridian
or within 70° of latitude to the North or South Pole.

There is a corresponding region of validity for the inverse mapping equations. A simple, non-maximal, but adequate
choicefor it isthe set of all points {x, y} such that:

| X| =10000000 meters and |y| < 20000000 meters

The above regions of validity permit all calculations of the form {Xx, y} - {A, ¢} - {X, ¥}, i.e. the forward mapping
equations can always be used to check an inverse-mapping-equation calculation.

m 3.8 Index §

As ameasure of how well a point given by {A, ¢} falls within the ellipsoid coverage (Subsection 3.7) and as an index
to computational -error bounds in Subsection 3.9, the following function of {A, ¢} is defined:

T /s
5:Minimum( [A], |A=m]|, |A+7], — =9, ¢+—)
2 2
The quantity ¢ is the minimum of the 5 quantities listed above. The ellipsoid coverage can be restated simply as

0 <70deg. Inwords, ¢ isthe smaller of the latitude-difference to the nearest Pole and the |ongitude-difference to the
nearest “ special” meridian (i.e. central or anti-central meridian).

= 3.9 Computational accuracy

The theoretical definition of transverse Mercator in Subsection 3.1 is the standard by which approximate formulations
such as in Subsections 3.2 and 3.5 are judged for computational accuracy. The forward mapping equations
(Subsection 3.2 using al terms) have the following computational-error bounds, depending on the index §:

index 6 bound
(deg) (meters)
30 107°
40 1078
50 0.5x10°6
60 1075
70 1072

For example, if a point P has index ¢ < 60 deg, then \/(x— X)2 +(y—Vy)? <10 °meters where {x, y} are the com-
puted coordinates and {X’, y’'} are the true coordinates of the conversion of P.

The inverse mapping equations have corresponding accuracies. In other words, the inverse mapping followed by the
true forward mapping would produce round-trip discrepancies in meters within the bounds given above.

Software developers competent in iterative numerical methods will know how to build an accurate inverse of this
document’s approximate forward mapping equations. This is discouraged, as it will not produce a more accurate
inverse mapping than the one given here.
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4. Transverse Mercator for other Ellipsoids

Section 3 was limited to one choice for the reference ellipsoid, namely the WGS 84 ellipsoid.
... bi> @l depend on the choice of the reference ellipsoid. This section provides the

constants Ry, €, ay, ..., az, by,

In particular, the

values of these constants for each ellipsoid in Appendix A of [12]. A method of calculating these is found in [9].
This provision extends the formulations of transverse Mercator in Subsections 3.2 and 3.5 to these other ellipsoids.

In this section, subscripted notations are replaced by non-subscripted notations. For example, a, is replaced by A2

and b, isreplaced by B2.

The ellipsoids are listed in order of increasing flattening (decreasing inverse flattening).

m 4.1 Everest 1956 (India) ellipsoid

Nane nane
NGA two- | etter code t wol et
Sem -maj or axis a
Semi -m nor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meridional isoperinetric radius R4
A2 = 8.3064943111192510534E- 04

A = 7.480375027595025021E- 07

A6 = 1.16750772278215999E- 09

A8 = 2.3479972304395461E- 12

Al10 = 5.474212231879573E- 15

Al2 = 1.40642257446745E- 17

B2 = -8.3064976590443772201E- 04

B4 = -5.805953517555717859E- 08

B6 = -1.63133251663416522E-10

B8 = -2.0923797199593389E-13

B10 = -3.630200927775259E- 16

Bl12 = -6.87666654919219E- 19

m 4.2 Other “Everest” ellipsoids

Everest 1956 (India)

EC

6377301. 2430000000000
6356100. 2283681013106
300. 80170000000000000
0.081472980982652689208

0. 0066378466301996867553
6366705. 1481254190443

There are other ellipsoids listed in Appendix A of [12] having “Everest” in their names. They differ from the Everest

1956 (India) ellipsoid in size but not in shape. Therefore they have the same values for f, f-1, e, €, a,, aa, ...

, bro.

The value of R; is obtained from the value of the semi-mgor axis, a, by multiplying by the constant
0. 99833846724957337010 Or by referring to the following table. (This multiplier pertains only to ellipsoids having this

shape, i.e. an inverse flattening of 300. 8017).

Nane code a b R4

Everest (India 1830) EA 6377276. 345000 6356075. 413140 6366680. 291494

Everest (E. Malaysia, Brunei) EB  6377298.556000 6356097.550301 6366702. 465590

Everest 1956 (India) EC 6377301. 243000 6356100. 228368 6366705. 148125

Everest 1969 (West Ml aysi a) ED 6377295.664000 6356094.667915 6366699. 578395

Everest 1948(W Mal aysi a, Si ngapore) EE 6377304. 063000 6356103. 038993 6366707. 963440

Everest (Pakistan) EF  6377309.613000 6356108.570542 6366713.504218
m 4.3 Airy 1830 ellipsoid

Nane nane Airy 1830

NGA two- 1l etter code twolet AA

Semi -maj or axis a 6377563. 3960000000000

Semi - minor axis b 6356256. 9092372851202

Inverse flattening 1/ f 299. 32496460000000000

(First) eccentricity e 0. 081673373874141892673

Eccentricity squared e? 0. 0066705399999853634746

Meri di onal isoperinmetric radius R4 6366914. 6089252214441

A2 = 8.3474517669594013740E- 04

A = 7.554352936725572895E- 07

A6 = 1.18487391005135489E- 09
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A8 = 2.3946872955703565E- 12
A10 = 5.610633978440270E- 15

Al2 = 1. 44858956458553E- 17

B2 = -8.3474551646761162264E- 04
B4 = -5.863630361809676570E-08
B6 = -1.65562038746920803E-10
B8 = -2.1340335537652749E-13
B10 = -3.720760760132477E- 16

B12 = -7.08304328877781E-19

= 4.4 Modified Airy ellipsoid
This ellipsoid has the same flattening (and inverse flattening) as the Airy 1830 ellipsoid above.

Nanme name Modified Airy

NGA two- | etter code twolet AM

Senmi - mgj or axi s a 6377340. 1890000000000
Semi -ninor axis b 6356034. 4479385342568

I nverse flattening 1/ f 299. 32496460000000000
(First) eccentricity e 0. 081673373874141892673
Eccentricity squared e2 0. 0066705399999853634746
Meridional isoperinmetric radius R4 6366691. 7746198806757

The coefficients, ap, ay, ..., by arethe same asfor the Airy 1830 ellipsoid.

m 4.5 Bessel 1841 (Ethiopia, Asia) ellipsoid

Nanme name Bessel 1841 (Ethiopia, Asia)
NGA two-|etter code twolet BR

Seni - maj or axis a 6377397. 1550000000000
Semi -minor axis b 6356078. 9628181880963

I nverse flattening 1/ f 299.15281280000000000
(First) eccentricity e 0. 081696831222527503120
Eccentricity squared e? 0. 0066743722318021446801
Meri di onal isoperimetric radius R4 6366742. 5202340428423

A2 = 8.3522527226849818552E- 04

A4 = 7.563048340614894422E- 07

A6 = 1.18692075307408346E-09

A8 = 2.4002054791393298E- 12

A10 = 5.626801597980756E- 15

Al2 = 1.45360057224474E- 17

B2 = -8.3522561262703079182E- 04

B4 = -5.870409978661008580E- 08

B6 = -1.65848307463131468E-10

B8 = -2.1389565927064571E-13

B10 = -3.731493368666479E-16

B12 = -7.10756898071999E- 19

m 4.6 Bessel 1841 (Namibia) ellipsoid
This ellipsoid has the same flattening (and inverse flattening) as Bessel 1841 (Ethiopia, Asia), above.

Nanme name Bessel 1841 (Nanmi bi a)
NGA two-letter code twol et BN

Seni - maj or axis a 6377483. 8650000000000
Semi -mi nor axis b 6356165. 3829663254699

I nverse flattening 1/ f 299.15281280000000000
(First) eccentricity e 0. 081696831222527503120
Eccentricity squared e? 0.0066743722318021446801
Meridional isoperinmetric radius R4 6366829. 0853687697376

The coefficients, ap, ay, ..., byp arethe same asfor Bessel 1841 (Ethiopia, Asia).
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m 4.7 Krassovsky 1940 ellipsoid

Nane namne
NGA two- | etter code twol et
Semi - maj or axi s a
Semi -minor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri di onal isoperinmetric radius R4
A2 = 8.3761175713442343106E- 04

A4 = 7.606346200814720197E- 07

A6 = 1.19713032035541037E-09

A8 = 2.4277772986483520E- 12

A10 =  5.707722772225013E- 15

Al2 = 1.47872454335773E- 17

B2 = -8.3761210042019176501E- 04

B4 = -5.904169154078546237E-08

B6 = -1.67276212891429215E-10

B8 = -2.1635549847939549E- 13

B10 = -3.785212121016612E-16

B12 = -7.23053625983667E- 19

= 4.8 Helmert 1906 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the Krassovsky 1940 ellipsoid above.

Nanme name
NGA two-|etter code twol et
Sem - maj or axi s a

Semi -minor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri di onal isoperimetric radius R4

Krassovsky 1940

KA

6378245. 0000000000000
6356863. 0187730472679
298. 30000000000000000
0.081813334016931147358

0. 0066934216229659432280
6367558. 4968749794253

Hel mert 1906

HE

6378200. 0000000000000
6356818. 1696278913845
298. 30000000000000000
0.081813334016931147358
0. 0066934216229659432280
6367513. 5722707412102

The coefficients, ap, ay, ..., bi» arethe same as for Krassovsky 1940.

= 4.9 Modified Fischer 1960 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the Krassovsky 1940 el lipsoid above.

Nane name
NGA two- 1l etter code twol et
Semi - maj or axi s a
Sem -m nor axi s b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri dional isoperinmetric radius R4

Modi fied Fischer 1960
FA

6378155. 0000000000000
6356773. 3204827355012
298. 30000000000000000
0.081813334016931147358

0.0066934216229659432280
6367468. 6476665029951

The coefficients, ay, ay, ..., b1y are the same as for Krassovsky 1940.

m 4.10 WGS 72 ellipsoid

Nane nane
NGA two- 1l etter code t wol et
Semi - maj or axi s a
Semi -minor axis b
Inverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri dional isoperimetric radius R4
A2 = 8.3772481044362217923E-04

Al 7.608400388863560936E- 07

A6 = 1.19761541904924067E- 09

A8 =  2.4290893081322466E- 12

Al0 = 5.711579173743133E- 15

WeS 72
VD

6378135. 0000000000000
6356750. 5000000000000
298. 25972082583179406

0. 081818848890064648207
0. 0066943240336952331159
6367447. 2386241894462
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Al12

B2 =
B4 =
B6 =
B8 =
B10 =
Bl12 =

1.47992364667635E- 17

-8.3772515386847544554E- 04
-5.905770828762463028E- 08
-1.67344058948464124E- 10
-2.1647255130188214E- 13
-3.787772179729998E- 16
-7.23640523525528E- 19

m 4.11 WGS 84 ellipsoid

The subsection repeats some information for the WGS 84 ellipsoid in the format of this section.

Narme

NGA two-letter code

Sem -mgj or axi s

Seni -minor axis

I nverse flattening

(First) eccentricity
Eccentricity squared

Meri dional isoperimetric radius

A2
A4
A6 =
A8 =

B2 =
B4 =
B6 =
B8 =
B10 =
B12 =

. 3773182062446983032E- 04
. 608527773572489156E- 07
.19764550324249210E- 09
.4291706803973131E- 12

. 711818369154105E- 15

. 47999802705262E- 17

P NP N

-8.3773216405794867707E- 04
-5.905870152220365181E- 08
-1.67348266534382493E- 10
-2.1647981104903862E- 13
-3.787930968839601E- 16
-7.23676928796690E- 19

m 4,12 GRS 80 ellipsoid

Name

NGA two-l etter code
Semi -maj or axis

Seni -minor axis
Inverse flattening
(First) eccentricity

Eccentricity squared
Meri di onal isoperimetric radius

A2
A4
A6 =
A8 =

B2 =
B4 =
B6 =
B8 =
B10 =
B12 =

. 3773182472855134012E- 04
. 608527848149655006E- 07

. 19764552085530681E- 09
.4291707280369697E- 12

. 711818509192422E- 15

. 47999807059922E- 17

P ON P N

-8.3773216816203523672E- 04
-5.905870210369121594E- 08
-1.67348268997717031E- 10
-2.1647981529928124E- 13
-3.787931061803592E- 16
-7.23676950110361E-19

name
t wol et

nane
t wol et

1/f

eZ
R4

m 4.13 South American 1969 ellipsoid

Nanme

NGA two- | etter code
Semi - maj or axi s
Sem -m nor axi s

I nverse flattening
(First) eccentricity

Eccentricity squared
Meri di onal isoperinmetric radius

name
twol et
a

b

1/ f

eZ
R4

WGES 84

VE

6378137. 0000000000000
6356752. 3142451794976
298. 25722356300000000
0.081819190842621494335

0. 0066943799901413169961
6367449. 1458234153093

GRS 80

RF

6378137. 0000000000000
6356752, 3141403558479
298. 25722210100000000
0.081819191042815790146
0. 0066943800229007876254
6367449. 1457710475269

Sout h American 1969

SA

6378160. 0000000000000
6356774. 7191953059514
298. 25000000000000000
0.081820179996059878869
0. 0066945418545876371598
6367471. 8485322822248
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B2
B4
B6
B8
B10
B12

m 4.14 Australian National 1966 ellipsoid

P NP N

-8
-5
-1.
-2
-3
-7

. 3775209887947194075E- 04
. 608896263599627157E- 07
.19773253021831769E- 09

. 4294060763606098E- 12

. 712510331613028E- 15

. 48021320370432E- 17

3775244233790270051E- 04
906157468586898015E- 08
67360438158764851E- 10
1650081225048788E- 13
788390325953455E- 16
23782246429908E- 19

2014-03-25

The Australian National 1966 ellipsoid isidentical to the South American 1969 ellipsoid. Its NGA two-letter codeis

“AN”". The numerical values of al the parameters are the same as those for South American 1969.

m 4.15 Indonesian 1974 ellipsoid

Narme name
NGA two- | etter code t wol et
Sem -mgj or axi s a
Semi - minor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri dional isoperinmetric radius R4
A2 = 8.3776052087969078729E- 04

A4 7.609049308144604484E- 07

A6 = 1.19776867565343872E- 09

A8 = 2.4295038464530901E- 12

A10 = 5.712797738386076E- 15

Al2 = 1.48030257891140E-17

B2 = -8.3776086434848497443E- 04

B4 = -5.906276799395007586E- 08

B6 = -1.67365493472742884E-10

B8 = -2.1650953495573773E-13

B10 = -3.788581120060625E- 16

Bl12 = -7.23825990889693E- 19

m 416 International 1924 ellipsoid

Nane namne
NGA two-| etter code twol et
Semi -maj or axis a
Seni -minor axis b
Inverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri dional isoperimetric radius R4
A2 = 8.4127599100356448089E- 04

Al 7.673066923431950296E- 07

A6 = 1.21291995794281190E- 09

A8 =  2.4705731165688123E- 12

A10 = 5.833780550286833E- 15

Al2 = 1.51800420867708E-17

B2 = -8.4127633881644851945E- 04

B4 = -5.956193574768780571E- 08

B6 = -1.69484573979154433E-10

B8 = -2.2017363465021880E- 13

B10 = -3.868896221495780E- 16

B12 = -7.42279219864412E-19

I ndonesi an 1974

ID

6378160. 0000000000000
6356774. 5040855398378
298. 24700000000000000
0. 081820590809460040025

0. 0066946090804090967678
6367471. 7410677818465

I nternational 1924

IN

6378388. 0000000000000
6356911. 9461279461279
297.00000000000000000

0. 081991889979029767433
0. 0067226700223333219966
6367654. 5000575837475
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= 4.17 Hough 1960 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the International 1924 ellipsoid.

Nane

NGA two- | etter code

Semi - maj or axi s

Semi -minor axis

I nverse flattening

(First) eccentricity
Eccentricity squared

Meri di onal isoperinmetric radius

name
twol et

Hough 1960

HO

6378270. 0000000000000
6356794. 3434343434343
297. 00000000000000000
0. 081991889979029767433

0. 0067226700223333219966
6367536. 6986270331452

The coefficients, ay, ag, ..., bis arethe same as for International 1924.

m 4.18 War Office 1924 ellipsoid

Nane

NGA two-l etter code

Semi -maj or axis

Seni -minor axis

Inverse flattening

(First) eccentricity
Eccentricity squared

Meri di onal isoperimetric radius

nane
t wol et

1/f

e2
R4

A2 = 8.4411652150600103279E- 04
A = 7.724989750172583427E- 07
A6 = 1. 22525529789972041E- 09
A8 = 2.5041361775549209E- 12
A10 = 5.933026083631383E-15

Al2 = 1.54904908794521E- 17

B2 = -8.4411687285559594196E- 04
B4 = -5.996681687064322548E- 08
B6 = -1.71209836918814857E-10
B8 = -2.2316811233502163E-13
B10 = -3.934782433323038E-16

B12 = -7.57474665717687E-19

m 4.19 Clarke 1866 ellipsoid

Narme

NGA two-l etter code

Sem -mgj or axi s

Seni -minor axis

I nverse flattening

(First) eccentricity
Eccentricity squared

Meri dional isoperinetric radius

A2 = 8.4703742793654652315E- 04
Al 7.778564517658115212E- 07
A6 = 1.23802665917879731E- 09
A8 = 2.5390045684252928E-12
A10 =  6.036484469753319E- 15

Al2 = 1. 58152259295850E- 17

B2 = -8.4703778294785813001E- 04
B4 = -6.038459874600183555E- 08
B6 = -1.72996106059227725E-10
B8 = -2.2627911073545072E-13
B10 = -4.003466873888566E- 16

B12 = -7.73369749524777E-19

war Office 1924

WO

6378300. 5800000000000
6356752. 2672297297297
296. 00000000000000000
0.082130039061778500016
0. 0067453433162892622352
6367530. 9812114439907

C arke 1866

CcC

6378206. 4000000000000
6356583. 8000000000000
294.97869821390582076

0. 082271854223003258770
0. 0067686579972910991438
6367399. 6891697827298
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m 4.20 Clarke 1880 (IGN) ellipsoid

Nane namne
NGA two- | etter code twol et
Semi - maj or axi s a
Semi -minor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri di onal isoperinmetric radius R4
A2 = 8.5140099460764136776E- 04

A4 = 7.858945456038187774E-07

A6 = 1.25727085106103462E- 09

A8 = 2.5917718627340128E- 12

A10 =  6.193726879043722E- 15

Al12 = 1.63109098395549E- 17

B2 = -8.5140135513650084564E- 04

B4 = -6.101145475063033499E- 08

B6 = -1.75687742410879760E-10

B8 = -2.3098718484594067E- 13

B10 = -4.107860472919190E- 16

B12 = -7.97633133452512E- 19

m 4.21 Clarke 1880 ellipsoid

Narme name
NGA two- | etter code twol et
Semi - maj or axi s a
Semi -minor axis b

I nverse flattening 1/ f
(First) eccentricity e
Eccentricity squared e?
Meri di onal isoperimetric radius R4
A2 = 8.5140395445291970541E- 04

A4 = 7.859000119464140978E- 07

A6 = 1.25728397182445579E- 09

A8 = 2.5918079321459932E- 12

Al0 = 6.193834639108787E- 15

Al2 = 1.63112504092335E-17

B2 = -8.5140431498554106268E- 04

B4 = -6.101188106187092184E-08

B6 = -1.75689577596504470E-10

B8 = -2.3099040312610703E-13

B10 = -4.107932016207395E- 16

B12 = -7.97649804397335E-19

m 4.22 Coverage of the ellipsoid

Cl arke 1880 (I GN)

CG

6378249. 2000000000000
6356514. 9999634416278
293. 46602080000000000
0. 082483256832670385055

0. 0068034876577242657616
6367386. 7366550997514

Cl arke 1880

CD

6378249. 1450000000000
6356514. 8695497759528
293. 46500000000000000

0. 082483400044185038061
0.0068035112828490643388
6367386. 6439805112873

2014-03-25

The statements about regions of validity in Subsection 3.7 are true also for the above éllipsoids. This is because the
ellipsoids above, listed after “WGS 84 ellipsoid” are not severely flatter than the WGS 84 ellipsoid, and because the

validity regions defined in Subsection 3.7 are more restrictive than what is theoretically possible.

m 4.23 Sphere

For a sphere of radius a, the formulas of Section 3 are applicable by setting f =e?*=e=0and b= R, = a and setting
al the coefficients ay, ay, ..., b1 to zero.
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5. Transverse Mercator with Parameters

Sections 3 and 4 presented the basic form of transverse Mercator. In this section, the basic form is extended two
ways. Firstly, where those sections measured longitude from the prime meridian, this section will allow longitude to
be measured from any specified meridian (“central meridian”). Secondly, the easting-northing-pairs {X, y} obtained
from those sections will be subjected to a homothetic transformation in this section. (A transformation is homothetic
if it consists of atranslation and/or a proportional re-sizing. Rotations and other modes of stretching/shrinking are not
allowed).

This section concludes with areview of the sources consulted in the development of this document.

m 5.1 Preliminary general form

Let f; and f, be the functions from Subsection 3.2 that define the forward mapping of the transverse Mercator
projection in its basic form. Let A be a constant in radians, let ko > 0 be a unitless constant, and let xcmand yeq be
constantsin meters. Then apreliminary general form of the transverse Mercator forward mapping equationsis:
X=ko f1(d = A0, @) + Xem
y=ko f2(d = Ag, @) + Yeq

The constants, also called parameters, have these notation, names, and units:

(15

Ao central meridian, CM radians
Ko central scalefactor, central scale (unitless)
Xem central meridian easting, CM easting meters
Yeq Equator northing meters

The parameter kg controls the proportional re-sizing and the parameters x.m and yeq control the translation mentioned
above. The corresponding inverse mapping equations are:

( X=Xm Y- qu]
A=2o+01 ,

ko ko 16)

s ( X=Xem Y- qu)
=02 )
ko ko

where functions g; and g, are the inverse mapping equations of the basic form of transverse Mercator specified in
Subsection 3.5.

The quantity A computed according to Eq. (5.16) liesin the interval Ag — 7 <A <A+ . To convert it to a longitude
lying in adifferent interval (of length 2r), the quantity 27 should be added or subtracted to it as necessary.

Thelist, {)Lo, Ko, Xem yeq}, isaset of unique independently-specifiable parameters.

m 5.2 Origin
The equations and parameters of Subsection 5.1 accomplish the goals stated in the Section 5 introduction, which were
to (i) specify ameridian of reference (the meridian Ag), (ii) apply a proportional re-sizing (the factor kg) and (iii) apply
a translation (the vector {xcm, yeq}). We should be done. However, for convenience, an alternate method to accom-
plish the translation has been adopted. Thisis now explained:

A point on the reference ellipsoid is selected for special treatment. It must lie in the transverse Mercator coverage
area (i.e. lie within 70° of longitude from the central or anti-central meridian or lie within 70° of latitude from the
North or South Pole), and is called the Origin. Let its longitude and latitude be notated Aigin aNd Porigin, respectively.

On the map projection plane, the Origin is to have rectangular coordinates {X, y} = {xorigin, yorigin}. Thiswill determine
the translation under consideration.
The above parameters have these notations, names, abbreviations, and units:

Aorigin Origin longitude radians

borigin Origin latitude radians

Xorigin (Origin easting), False Easting, FE meters
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Yorigin (Origin northing), False Northing, FN meters

(If there was an opportunity to revise the terminology, “Origin easting” and “Origin northing” would make sense.
Accepted terminology is “False Easting” and “False Northing”).

= 5.3 Given {Aorigini ¢originv Xoriginv yorigin}v CompUte {Xcmi yeq}
Let the reference ellipsoid and transverse Mercator parameters Ao and ky be fixed. Let the parameters
{Xorigin Porigin, Xorigin: Yorigin} b€ given. To obtain values for the parameters {Xem, Yeq) that yield the same translation,
the following applies:

Xem = Xorigin — kO fl(lorigin - Ao, d’origin)
qu = yorigin - kO fz(/lorigin - AO: ¢origin) (17)

m 5.4 General form of transverse Mercator

The genera form of transverse Mercator is Egs. (5.15 and 5.16) with the further stipulations that X, and yeq are taken
as intermediate variables computed according to Eq. (5.17) and that the list {/lo, Ko, Aorigine Porigins Xorigins yorigm} is
adopted as the general form’s set of (non-unique) independently-specifiable parameters.

Not al authorities provide the option to alow an Origin longitude distinct from the central meridian. When the set of
parameters has only one specia longitude, Agrigin= Ao should be assumed.

m 5.5 Coverage of the ellipsoid

The statements in Subsection 3.7 about the regions of validity for the forward and inverse mapping equations carry
over to the general form of transverse Mercator if A is replaced by A — Ag and X is replaced by (X — Xem)/ko and y is

replaced by (Y - Yeq) /ko-

m 5.6 History and sources

A history of the development of transverse Mercator is outside the scope of this document, but some aspects should be
mentioned. Transverse Mercator as defined in Subsection 3.1 and extended in Subsections 5.1 or 5.4 for parametersis
sometimes given the name Gauss-Kriiger or the phrase “of Gauss-Kruger type’ after its inventors C. F. Gauss and L.
Krlger. This is done to distinguish it from some historical versions (Gauss-Lambert, Gauss-Schreiber) that do not
adhere to Requirement 3 of Subsection 3.1.

The formulas in Subsections 3.2 and 3.5 are extensions of the work of Kriiger (1912). Kriger carried out an expan-
sion to 4th order, i.e. obtaining coefficients a,, a4, ag, ag to some precision, and this resulted in equations which were
accurate to within 10-® meters for points located within 1000 km of the central meridian. The algorithms given in
Section 3 extend Kriiger’s method to 6th order and are based on the work of [4], [9], and [15]. Variations of Kriiger's
algorithms are in use by the national geodetic institutes of several European countries. Recently the Oil and Gas
Producers (formerly EPSG) added some version of this method to their compendium of coordinate conversion
formulas [6]. Another reference for the basic idea of Kriiger’'s method is Section 5.1.6, “Gauss-Kruger projection for
awide zone” of [1].

An international standard for spatial reference frames and their coordinates, including some map projections, is
presented in [8]. The mathematical formulas it adopted for transverse Mercator do imply and are implied by the
theoretical definition in this document (Subsection 3.1). Its choice of parameters is the same as Subsection 5.4 with
)Lorigin = Ao.

= 57 Old v. new

Reference [3], i.e., Edition 1 of this document, and references [16] and [17] used a gorithms based on an expansion in
(A —Ag). The major drawback of this approach is that it has a much more restricted domain of applicability, particu-
larly at high latitudes. In contrast, the algorithms given in Subsections 3.2 and 3.5 are vast improvements. They offer
better accuracy, greater ellipsoid coverage, faster execution, simpler logic, and easier software coding.
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The choice of parameters in Subsection 5.4 follows current practice except that providing Aqigin @ a parameter distinct
from Ao is new. This is recommended for its naturalness (see Subsection 5.2) and its flexibility in specifying elec-
troni c-drafting-table coordinates, especially when the map sheet has multiple plans.

Assessments of software packages in current use at DoD are outside the scope of this document. If the transverse
Mercator routines are satisfactory with respect to accuracy, ellipsoid coverage, execution speed, and code maintainabil-
ity, they need not be replaced with the algorithms specified here.
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6. Transverse Mercator Auxiliary Functions

Every conformal map projection comes with two auxiliary functions. point-scale and convergence-of-meridians
(CoM). The formulas for these for transverse Mercator are the subject of this section. Detailed explanations of the
importance and usefulness of these functions are outside the scope of this document, but some introductory definitions
will be offered.

m 6.1 Point-scale

Loosely, point-scale is the function which tells how the map projection enlarges or reduces small distances when
transferring them from the reference ellipsoid to the map projection plane. It islocation specific (it varies from point
to point); it is independent of direction (conformality is required) and it is a unitless ratio (proportionality is assumed).
Let o (sigma, for “s” in “scaling”) be the notation for this function so that o(P) is the value of this function at position
P. If points A and B on the reference ellipsoid are one meter apart, then on the map projection plane they will be
o (A) =~ o(B) meters apart.

A precise definition using the differential calculus is available in the map projection literature [1], [8], [16], or [17],
where it might be called scale, local scale, local scale function, scale distortion, or point distortion.

m 6.2 Convergence-of-meridians

Convergence-of-meridians (CoM) is the function which gives the angles of intersection between the meridians and the
map projection’s vertical lines, i.e. the lines x = constant. More precisely, it is the angle from true north to map north
at such an intersection point, where the positive sense of the rotation is clockwise. True north is tangent to the
meridian and points in the direction of increasing latitude. Map north is tangent to (and coincident with) the line
X = constant and points in the direction of increasing y coordinate. All this takes place on the map projection plane.

The symbol for CoM will be y (gamma, for “g” in “grid declination” and “grid convergence’, synonyms for CoM
when the map projection is one of the universal grids UTM or UPS).

m 6.3 Given {a, ¢}, compute {o, y} — basic case

The basic form of transverse Mercator (Section 3) is handled first. Let a be the semi-major axis and e be the eccentric-
ity of the reference ellipsoid. When it is desired to emphasize the functional dependence of point-scale - and CoM vy
on longitude A and latitude ¢, the notations f3 and f; will be used.

Theformulasfor o and y are:

2(Rq/@)W(coshu) \ 042 + 0,2
A+sing)/P+(1—-sing)P
v = f4(A, ¢) = arctan(cosA, (sin y)SiNA) + arctan (o1, o)

o= fad, ¢) =

where:

o1 =1+ 2aycosh(2u) cos(2v) + 4 a4 cosh(4u) cos(4V) + ... + 12 a;» cosh(12 u) cos(12v)
oa=2asinh(2u)sin(2v) + 4a4 sinh(4u)sin(4v) + ... + 12 a;» sinh(12 u) sin(12 v)
w=1v1-€sn’¢
_ 1+esing)%?
P = exp (earctanh (esin ¢)) :(7]
l-esing

and where u and v are computed by Eq. (3.8) of Subsection 3.2 and R, and the coefficients ay, ay, ..., a;o have the
same values asin Sections 3 and 4.

Depending on their requirements, software developers should consider bundling the equations of this subsection with
those of Subsection 3.2 to obtain a single module which could be described, “ Given {A, ¢}, compute {X, y, o, v}".

m 6.4 Given {A, ¢}, compute {0, ¥y} — general case
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The general form of transverse Mercator is now considered. Let the parameters {Ao, Ko, Aorigin, Porigins Xorigins yongin} be
given. The subset {/\origin, Borigin, Xorigine yorigin} isirrelevant to the computation of o and y. Subsection 6.3 gave the
formulas for o and y for the case that Ao = 0 and ky = 1. The formulas for the general case are:

o=k f3(1 =20, ¢)

y="Tfa(d =2, ¢)
where f3 and f; are the functions defined in Subsection 6.3. Software developers could bundle the above with Eq.
(5.15) as part of amodule, “transverse Mercator preliminary general form”.
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7. Universal Transverse Mercator (UTM)

This section gives the definition of UTM, some numerical examples of it, and the administrative rules added to it.

m 7.1 Definition of UTM

UTM is afamily of 120 instances of the general form of the transverse Mercator projection. Each instanceis caled a
zone and is given a zone number Z between —60 and +60 excluding zero. (As a connection to other explanations, the
zone numbers can be arranged suggestively this way):

+1

+2

+30

+31

+59

+60

-1

-2

-30

=31

-59

-60

UTM zone Z is the transverse Mercator projection whose parameters {Ao, Ko, Aorigin, Gorigin: Xorigin: Yorigin} &€ specified:

Ao =-183deg + (6deg) | Z|
ko = 0.9996 exactly
Aorigin =2

¢ongn1= 0
Xorigin = 500 000 meters

Yorigin= 0 if Z> 0 bUt Yoigin= 10000000 metersif Z < 0

(using the absolute valuefunction applied to Z)

Some comments apply: East longitude is positive; west longitude is negative. For Z = +1, the centra meridian in
degreesis —-183°+6°x1=-177°, which by the above rule may be notated 177°W. The notation “-177 °W" is
incorrect. Never use both a prefix (plus or minus sign) and a suffix (“E” or “W”). A longitude in degrees can be a
UTM central meridian if and only if it is awhole number divisible by three but not by two.

m 7.2 Examples of computing {X, vy, o, v}, given {A, ¢, Z}

This subsection gives numerical examples of the computation of the easting x, northing y, point-scale o, and grid-
declination y, given the longitude A, latitude ¢, and UTM zone number Z.

The following points in the Indian Ocean are symmetrically arrayed about the Equator and 75°E, which is the central
meridian for Z=+43. Lon., Lat., and CoM are in degrees; easting and northing are in meters, and point-scale (“pt -
scal e”) isaunitlessratio. The computations pertain to the WGS 84 ellipsoid.

E. g

= '
O © O ~NO OB~ WNPE !

Lon

(deg) (deg)

65
74
75
76
85
65
74
75
76
85

Lat

3

[ N T
W W wWwwwwwowow

z

43
43
43
43
43
43
43
43
43
43

easting
(meters)

-616926
388870
500000
611129.

1616926.

-616926
388870
500000
611129.

1616926.

925721
867643
000000
132357
925721
925721
867643
000000
132357
925721

nort hi ng
(meters)

336734. 192052
331643. 938073
331593. 179548
331643. 938073
336734. 192052
-336734. 192052
-331643. 938073
-331593. 179548
-331643. 938073
-336734. 192052

Example 1, above, devolvesto the examplein Subsection 3.4.

pt-scale
. 015083
999753
999600
999753
015083
015083
999753
999600
. 999753
. 015083

roocorkProooOR

. .
OCooooo0oo0oooo

CoM

(deg)
. 528835

-0.052341

000000
. 052341
. 528835
528835
. 052341
000000
. 052341

-0. 528835

The same points are re-computed for zone Z = —43, and the only change is the northing. An offset of 10,000,000

meters has been added:

E.g. Lon Lat z

---  (deg) (deg)
11 65 3 -43
12 74 3 -43
13 75 3 -43
14 76 3 -43
15 85 3 -43
16 65 -3 -43
17 74 -3 -43

easting
(meters)

-616926
388870
500000
611129.

1616926.

-616926
388870

925721
867643
000000
132357
925721
925721
867643

10336734
10331643.
10331593.
10331643.
10336734
9663265.
9668356.

nort hi ng
(meters)

32

192052
938073
179548
938073
192052
807948
061927

pt-scale
. 015083
. 999753
. 999600
999753
. 015083

. 015083
. 999753

orrooopr

.
coooooo

CoM
(deg)

-0. 528835

. 052341
000000
052341
. 528835
. 528835
. 052341
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18
19
20

75
76
85

-3 -
-3 -
-3 -

43
43
43

500000. 000000
611129. 132357
1616926. 925721

9668406.
9668356.
9663265.

820452
061927
807948

0. 999600
0. 999753
1. 015083

0
-0
-0

000000
052341
528835

2014-03-25

The following points in the Arctic region are symmetrically arrayed about the North Pole, and about the central

meridian 75°E and its anti-meridian 105 °W = 255 °E. (Thefirst and last points are the same):
E. g

21
22
23
24
25
26
27

Lon Lat
(deg) (deg) -
-105 80

-45 80

15 80
75 80

135 80

195 80

255 80

z
43
43
43
43
43
43
43

easting
(meters)

500000
-469262.
-469262.

500000
1469262.
1469262.

500000

000000
805167
805167
000000
805167
805167
000000

north

(mete
11114344
10560437
9435492
8881585
9435492
10560437
11114344

ing

rs)

070054
037836
848206
815988
848206
037836
070054

m 7.3 Examples of computing {a, ¢}, given {Z, X, y}

pt-scal e
. 999600
. 011097
. 011097
. 999600
. 011097
. 011097
. 999600

OFRr RP ORRO

CoM

(deg)

-180

-120
-59.

0
59.
120.
180.

000000
381138
618862
000000
618862
381138
000000

This subsection gives numerical examples of the computation of the longitude and latitude, given the zone number,
easting and northing. Easting and northing are in meters; longitude and |atitude are in degrees. The reference ellip-

soid isWGS 84.
E. g. Z easting
--- --- (meters)
1 43 500000
2 43 600000
3 43 1000000
4 43 500000
5 43 600000
6 43 1000000
7 43 500000
8 43 600000
9 43 1000000
10 43 500000
11 43 600000
12 43 1000000
13 43 500000
14 43 600000
15 43 1000000
16 43 500000
17 43 600000
18 43 1000000
19 43 500000
20 43 600000
21 43 1000000
22 43 500000
23 43 600000
24 43 1000000

northing
(meters)
0

0

0
2000000
2000000
2000000
4000000
4000000
4000000
6000000
6000000
6000000
8000000
8000000
8000000
10000000
10000000
10000000
15000000
15000000
15000000
20000000
20000000
20000000

m 7.4 Administrative rules

For standard uses at DoD, there are amendments to UTM as defined above, called administrative rules. The mathemat-
ics does not require them. The most important of these rules are:

For Z > 0, UTM zone Z isintended for the portion of the reference ellipsoid given by:

75.
75.
79.
75.
75.
79.
75.
76.
80.
75.
76.
82.
75.
77.
89.

-105
166
165

-105

-106

-111

-105

-105

-109

Lon
(deg)
0000000000
8986376602
4887438844
0000000000
9450469497
7195800291
0000000000
1114780322
5461340659
0000000000
5307012564
6176089075
0000000000
9124923218
2856856739
. 0000000000
. 1657933474
. 2329617955
. 0000000000
. 2712189672
. 3373820793
. 0000000000
. 8986378445
. 4887448015

o O o

Lat
(deg)

. 0000000000
. 0000000000
. 0000000000
18.
18.
18.
36.
36.
36.
54.
54.
53.
72.
72.
71.
89.
89.
85.
45.
45.
44.
-0.
-0.
-0.

0887089431
0863946381
0310022588
1447180988
1395604499
0161920195
1481041039
1383733178
9061008395
0992225251
0775365270
5657403285
9817727747
1041886301
5261156460
1168391850
1097638704
9406465210
0368235977
0368190381
0367098873

Adg—3deg < A < Ag+3deg and 0= ¢ <84deg

For Z <0, UTM zone Z isintended for:
Adg—3deg<A<Adg+3deg and —80deg=<¢p <0

The inequalities above are strict or non-strict according to the administrative rule that a zone owns its southern and
western boundaries. In other words, points on a zon€' s southern and western boundaries belong to the zone but points
on its northern and eastern boundaries do not.

The above has exceptions (more administrative rules) for parts of Norway and the Arctic. These are given in [11] and
areincluded in Subsection 7.5.
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Examples 2,3,4 in Subsection 7.2 comply with the administrative rules; Examples 1,5-10 do not.

Software devel opers should be aware that the administrative rules cannot be applied in every situation, such as when
overlapping or partly overlapping UTM grids are mandated for a map sheet. Again, see [11]. Geographic informa-
tion analysts should be aware that for analytical purposes the administrative rules can be put aside in favor of obtain-
ing continuous coordinates for a region of interest. For example, UTM zone 16 coordinates could be used for hurri-
cane Katrina damage studies even where some of the damage is west of 90°W.

m 7.5 Given {a, ¢}, compute Z

This subsection gives the procedure to determine the value of Z for which UTM zone Z contains the point {A, ¢} in
compliance with the administrative rules. At the outset, if A =180deg is given, it should be converted to
A=-180deg. The inequalities (-180deg) < A < 180deg and (-80deg) < ¢ < 84deg should be confirmed.
Then, in pseudo-code, the procedureis:

A + 180 deg
7)”

Z:Floor(
6deg
if 9 <0
Z=-Z
if Z=31and 56deg < ¢ < 64deg and A = 3deg
Z2=32
elseif Z=32 and ¢ = 72deg
if A<9deg
z=31
else
Z=33
elseif Z=34and ¢ = 72deg
if A<21deg
Z=33
else
Z2=35
elseif Z=36andand ¢ = 72deg
if A<33deg
Z=35
else
Z=37

m 7.6 Hierarchy of subroutines

Software design considerations are mostly beyond the scope of this document, but the following is recommended. Let
the foregoing formulas and logic be gathered into subroutines under the following hierarchy, where each subroutine is
aclient of the one below it:

UTM with administrative rules
e UTM

transverse Mercator general form

transverse Mercator preliminary general form

transverse Mercator basic form
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8. Basic Polar Stereographic

The other universal grid system is Universal Polar Stereographic (UPS) and is based on the polar stereographic
projection. This section gives the formulas for the polar stereographic in its basic form. Later in Section 9, various
parameters such as zone (north or south), central meridian and central scale factor will be introduced. They will
enable polar stereographic to be offered in its commonly-used general form.

Stereographic projections in general are outside the scope of this document. The only stereographic projection treated
herein isthe polar stereographic projection.

m 8.1 Given {a, ¢}, compute {X, VY, o, 7}

The basic form of the polar stereographic projection chosen for this document is centered at the north Pole and has the
following for its forward mapping equations. Let {A, ¢} be the longitude and latitude, respectively, of a point on the
reference ellipsoid excepting the south Pole. The rectangular coordinates {x, y}, the point-scale o (Subsection 6.1)
and the convergence-of-meridiansy (Subsection 6.2) corresponding to the given point are:

2a(sin) cos y
x=fiA, ¢) = e —
k90(1+sm)()
—2a(cosA) cos y
y=fHbA, ¢)= ———
kgo (1+S|nX) (18)
L ) 24 1-€sin’¢ exp(earctanh(esing)) 2\/(1+esin¢)l+e(1—esin(jb)l‘e
g = , = =
A e oL+ Sin) keo(1+sin)
y=f@Q ¢=2

where, from Subsection 2.8,
(cos y, sin y) = PhiToChi (¢)

and where, from Section 2, {a, €} are the semi-major axis and eccentricity of the reference ellipsoid. The constant kgg
depends only on the reference ellipsoid and is computed by:

keo=V 1-€ exp(earctanhe) = \/ 1+ete@-el=® (19)

Where two formulas are given, namely for o = f3(4, ¢) and for Kgg, the one using arctanh is preferred. (The notation
“kgo” Was chosen because its value is determined by the desire to have o~ = 1 at the north Pole for the basic form).

For readers who are familiar with polar stereographic, or who have looked ahead to Section 9, it can be stated that the
parameter choices implied by Eq. (8.18) are (i) a centra meridian of longitude O deg, (ii) a central scale factor of
1.0000, (iii) the north Pole adopted as the “Origin” point, and (iv) a False Easting and a False Northing of O mE and
0mN, respectively, assigned to that origin. Thisisthe basic form of polar stereographic.

m 8.2 Given {X, y}, compute {A, ¢}
The inverse mapping equations for the basic form are;

A= gl(x! Y) = arctan (_y! X)

¢ = go(X, y) = ChiToPhi (cos y, sin y) (20

where the function ChiToPhi is defined in Subsection 2.9 and cos y and sin y are computed by:

2r
cosy =

1+r2
. 1-r?
sny =

1+r2

where:
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Koo X2 (koo Y)2
rzz(—go )+(—90y] and r=1/r?

2a 2a

Longitude at the Poles is ambiguous, i.e. not well defined. For the forward mapping equations (Section 8.1) this was
not a problem. The formulas there will correctly convert ¢ = +90deg no matter what numerical value is used for A.
In this subsection, the ambiguity is a problem. The attempted computation of A in Eq. (8.20) will fail when the math-
library routine for arctangent encounters arctan(0, 0). This will happen at a Pole, where x=0 and y=0. To get
around this, let the software define a constant, Ap0e =0 (Suggested), and execute A = Apge if x=0 and y=0, and

execute Eq. (8.20) otherwise.
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9. Polar Stereographic with Parameters

Section 8 presented the basic form of the polar stereographic projection. In this section, the basic form is extended
two ways: (i) Where Section 8 measured the longitude from the prime meridian, this section will alow longitude to
be measured from any specified meridian (“central meridian”). Then (ii), the easting-northing pairs {X, y} obtained
from that section will be subjected to a homothetic transformation in this section, i.e. subjected to a translation and/or
aproportional re-sizing. This follows the pattern of Section 5. (For polar stereographic but not for transverse Merca-
tor, the combination of (i) and (ii) is asimilarity transformation).

m 9.1 General form (kp)
Let Z=+1beaflag such that Z = 1 (respectively, Z = —1) indicates the north (respectively, south) polar stereographic
projection. Let Ao be a constant in radians, ko > 0 be a unitless constant, and Xoe and Ypoe be constants in meters.
Then ageneral form of the polar stereographic forward mapping equationsis:
ForZ=+1,
X=Ko f1(A — Ag, @) + Xpole
y= Ko f2(A = Ao, )+ Ypole
o =ko f3(A = Ao, 9)
y=fad =2, §)=2-20
(21)
Forz=-1,
X=Ko f1(A — Ao, —¢) + Xpole
y=—ko f2(A — 29, —¢) + Ypole
o =Ko f3(A = Ao, —¢)
y=—f4d =2, =) =-1+ 2o
where {X, y, o, v} are the easting, northing, point-scale and CoM corresponding to the reference €ellipsoid point at
longitude A and latitude ¢, and where functions f,, f,, f3, and f4 are defined in Subsection 8.1.
The constants, also called parameters, have these notations, names and units:

Ao central meridian, radians
longitude down from the Pole (Z = 1),
longitude up from the Pole (Z = -1).

ko central scale, point-scale at the Pole, scale at the Pole (unitless)
Xpole  €asting of the Pole meters
Ypole  Northing of the Pole meters

The parameter ko controls the proportional re-sizing and the parameters Xpge and Ypole CoNtrol the translation men-
tioned in the introduction to this section. The corresponding inverse mapping equations are:

ForZz=1,

X—Xpole Y~ Ypole
A= )to + 91( , )
ko ko
X—=Xpole Y- ypole]

oo
1k ko

22
For Z=-1, @2

X—Xpole Y~ Ypole
A= )(0 + 91( , )
ko —ko

p (X_ Xoole Y~ ypole]
= _92 ’
ko —ko
The quantity A computed according to Eq. (9.22) liesin the interval Ao — 7 <A <A+ . To convert it to a longitude
lying in adifferent interval (of length 2r), the quantity 2 should be added or subtracted to it as necessary.

Thelist {Z, Ao, Ko, Xpole: Ypole} IS @set of unique independently-specifiable parameters.
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= 9.2 Origin
(This subsection is deliberately almost the same wording as Subsection 5.2 “Origin”).
The equations and parameters of Subsection 9.1 accomplish the goals stated in the Section 9 introduction, which were
to (i) specify a meridian of reference (the meridian Ag), (ii) apply a proportional re-sizing (the factor kg) and (iii) apply
a trandation (the vector {xpo|e, yp0|e}). More options are not a necessity. However, for convenience, an alternate
method to accomplish the translation is possible, and is now explained.
A point on the reference ellipsoid is selected for specia treatment. It must lie in the élipsoid coverage area (i.e.

outside a small region around the opposite Pole) and is called the Origin. Let its longitude and latitude be notated
Aorigin @d dorigin, respectively.  On the map projection plane, the Origin is to have rectangular coordinates

{X, Y} = {Xorigin: Yorigin}- Thiswill determine the translation under consideration.

The above parameters have these notations, names, and units:

Aorigin Origin longitude radians
Gorigin Origin latitude radians
Xorigin (Origin easting), False Easting, FE meters
Yorigin (Origin northing), False Northing, FN meters

(If there was an opportunity to revise the terminology, “Origin easting” and “Origin northing” would make sense.
Accepted terminology is “False Easting” and “False Northing”).

= 9.3 Given {)‘origina ¢originr Xoriginr YOrigin}r CompUte {Xpolea ypole}
Let the reference ellipsoid and polar stereographic parameters Z, Ao, and ky be fixed. Let the parameters
{Xorigin: Porigin: Xorigin: Yorigin} b€ given. To obtain values for the parameters {Xpole, Ypole} that yield the same translation,
the following applies:
ForZ=1,
Xoole = Xorigin — Ko fl(/lorigin — Ao, ¢origin)
ypole = YOrigin - kO f2(/lorigin - /101 ¢origin)
ForZ=-1, (23)
Xoole = Xorigin — Ko fl(/lorigin — Ao, _¢origin)
Ypole = Yorigin + Ko f2(/lorigin — Ao, _¢origin)

= 9.4 Other meanings of “Origin”

The polar stereographic projection as defined in this document should be treated as a map projection in its own right
and not as a special case of more general kinds of map projections that are called “ stereographic”. Consequently, the
set of parameters has been tailored to this purpose. Moving the origin as accomplished by choosing values for
{)Lorigm, Porigin, Xorigins yorigm} and applying Eq. (9.23) has no affect on the shape, size, or orientation of any feature
portrayed on the map. It affects only the up/down placement of the x-axis and left/right placement of the y-axis on the
map projection plane.

By contrast, literature and software that treats the more general “stereographic” projection (not defined in this docu-
ment) might use the term “Origin” differently. Its use might include a parameter called “latitude of Origin” and
require it to be 90° to obtain the polar stereographic projection.

In this document, the concept of origin and the meaning of {Aeigin, Gorigin Xorigin, Yoriginf are consistent between polar

stereographic and transverse Mercator. This is to the advantage of cartographers and geographic information analysts
having to try both map projections.

m 9.5 General form (kg, arbitrary origin)

An dternate general form of the polar stereographic projection is Egs. (9.21 and 9.22) with the further stipulations that
Xpole aNd  Ypoe @€ taken as intermediate variables computed according to Eg. (9.23) and that the list
38



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

{Z, Ao, Ko, Aorigine Porigine Xorigins yorigm} is adopted as the general form’s set of (non-unique) independently-specifiable
parameters. (The list is non-unique because more than one quadruple {Aorigin, Dorigin, Xorigins yorigin} will define the
same translation, i.e. the same {Xpoie, Ypole Values).

m 9.6 Standard parallel

The standard parallel, also called the latitude of unity scale, is the value of ¢ in Eqg. (9.21) that gives o = 1. It will
exist if kg < 1. Itsnotation in this document is ¢;.

m 9.7 Given ¢, compute kg

Given the standard parallel ¢4, the formulato find the scale factor kg at the relevant Poleis:

For Z=1,
- 1 ~ kgo(1 + Sin¢y)
f3(0, ¢1) 2\/(1+ esingy)*e(1-esing;)!®
For Z=-1, -
kO _ 1 _ kgo(l —sin $1)
f3(0, _¢l)

2 \/(1 —esingy)*e(1+esing)t®

m 9.8 Given kg, compute ¢,

For Z=+1, let avaue kg < 1 for the scale factor at the Pole be given. Then the method to compute the standard
paralel ¢, is:

¢ =Zarcsins
where sisthe limit (within the desired resolution) of the sequence s;, S, Sz, ... Whose members are computed by:
s1=-1+2kg

2ko \/(1+ esyte(l-es)l®
Sl = -1
Kao

m 9.9 General form (¢, arbitrary origin)
Another general form of the polar stereographic projection is Egs. (9.21 and 9.22) with the further stipulations that
Xooler Ypole: aNd Ko are taken as intermediate variables computed according to Egs. (9.23 and 9.24) and that the list
{Z, Ao, 61, Aorigine Poriginy Xorigins yorigin} is adopted as the general form’s set of (non-unique) independently-specifiable
parameters. Note that ¢, replaces kg inthelist.
The adjectives “unique” and “independently-specifiable” and their negatives have been used carefully in this section

when describing lists of polar stereographic parameters. As another example, consider the list
{Z, Ao, Ko, #1, Xpoles ypo|e}. Its parameters are all unique, but they are not all independently-specifiable because both kg

and ¢, arelisted.
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= 9.10 Examples of conversions between ¢, and kg
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The following two tables pertain to the north polar stereographic projection (Z=1) of the WGS 84 ellipsoid
(a=6378137 and f 1 = 298.257223563).

In the table at left, the values of ¢, are exact and the values of ky are computed to as many digits shown. In the table

at right, the values of kg are exact, and the values of ¢, are computed to as many digits as are shown.

foxk kO
degree unitless

-75 0.017 259 384 673
-60 0. 067 773 950 243
-45 0. 147 883 853 421
-30 0.251 891 492 664
-15 0. 372 562 837 459

0 0.501 678 277 625
15 0.630 570 160 065
30 0. 750 629 794 742
45 0.853 799 593 615
60 0.933 069 071 736
75 0.982 966 757 777
80 0.992 404 648 246
81 0.993 844 677 874
82 0.995 134 351 941
83 0.996 273 262 333
84 0.997 261 048 527
85 0.998 097 397 746
86 0.998 782 045 101
87 0.999 314 773 702
88 0.999 695 414 760
89 0.999 923 847 656
90 1. 000 000 000 000

k0 Jox

unitless degree

0. 1000 -53. 337 403 999 811
0. 2000 -37.116 011 177 617
0. 3000 -23.825 251 373 649
0. 4000 -11. 763 627 302 241
0. 5000 -0.192 963 050 538
0. 6000 11.385 608 705 462
0. 7000 23.471 956 301 947
0. 8000 36.808 078 424 089
0. 9000 53.106 923 780 672
0. 9100 55. 064 894 505 323
0. 9200 57.123 352 185 495
0. 9300 59. 302 785 064 482
0. 9400 61.631 355 734 180
0. 9500 64.149 649 327 832
0. 9600 66.920 027 216 673
0. 9700 70. 047 603 511 896
0. 9800 73.737 632 650 010
0. 9900 78.520 890 585 055
0. 9910 79.111 860 671 964
0. 9920 79.736 353 686 644
0. 9930 80. 400 910 884 378
0. 9940 81.114 517 868 594
0. 9950 81.890 113 174 369
0. 9960 82.747 558 146 254
0. 9970 83.720 292 647 173
0. 9980 84.873 530 910 724
0. 9990 86. 375 668 096 133
0.9991 86.561 716 515 710
0. 9992 86. 758 411 486 352
0.9993 86.967 824 204 285
0. 9994 87.192 799 401 974
0. 9995 87.437 432 634 553
0. 9996 87.708 009 826 129
0. 9997 88. 015 112 711 542
0. 9998 88.379 374 422 928
0. 9999 88. 854 064 538 034
1. 0000 90. 000 000 000 000
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10. Universal Polar Stereographic (UPS)

This section gives the definition of UPS, some numerical examples of it, and the administrative rules added to it.

m 10.1 Definition of UPS

The Universal Polar Stereographic (UPS) system is these two instances of the polar stereographic projection with
parameters. The parametersfit Egs. (9.21 and 9.22).

North UPS is defined by:

Z=1

Ao =0 (longitudedown fromthe Pole)
ko=0.994 (exactly)

Xpole = 2000000
Ypole = 2000000

South UPS is defined by:

Z=-1
Ao =0 (longitudeup fromthePole)
ko=0.994 (exactly)

Xpole = 2000000
Yoole = 2000000

m 10.2 Examples of computing {x, y, o, v}, given {4, ¢, Z}

The following computations pertain to the WGS 84 ellipsoid.

E. g

© 0N WNPRE

NP RPRRRRRERRRRR
O OWoO~NOUAWNLEREO

Lon
(deg)
-179

-90

-1
0

1
89
90
91
179
180

-179
-90
-1

0

1

90
179
180

Lat
(deg) -

90
89
88
87
86
85
84
83
82
81
80
40
3
2
1
0
-1
-2
-3
-4

N

PR PRPRRPRPRPRPRPREPREPRPRREPRPRERRREERERR.!

easting
(meters)

2000000
1998062.
1777930
1994185.
2000000
2009694
2666626.
2778095.
2889442.
2017473.
2000000
2000000
1790630
- 10206568
1783239.
2000000
2224408.
15083269.
2232331.
2000000

000000
320046
731071
827038
000000
068153
157825
750322
490749
190606
000000
000000
987261
118587
204558
000000
737826
373905
498720
000000

northi ng
(meters)

2000000
2111009.
2000000
1666906.
1555731.
1444627.
1988363.
2000000
2015525.
3001038.
3112951
-3918313
13994742.
2000000
-10418217
-10637318
-10856367
2000000
15310262.
15545537.

000000
610243
000000
254073
570643
207468
997132
000000
276426
419357
136955
984953
706481
000000
653909
498257
979638
000000
647286
944524

= 10.3 Examples of computing {1, ¢}, given {Z, X, y}

The following computations pertain to the WGS 84 ellipsoid.

E.g.

=

0 N OA WN

Zz
-1
-1
-1
-1
-1
-1
-1
-1

easting
(meters)
0
1000000
2000000
3000000
4000000
0
1000000
2000000

northing
(meters)
0

0
0
0
0
1000000

1000000
1000000

-135.
-153.
-180
153.
135.
-116.
-135.
180.

Lon
(deg)
0000000000
4349488229
0000000000
4349488229
0000000000
5650511771
0000000000
0000000000

41

-64
-70
-72.
-70
-64
-70
-77.
-81.

pt-scal e
. 994000
. 994076
994303
994682
. 995212
. 995895
. 996730
. 997718
998860
000156
. 001608
. 209619
. 883453
. 914973
947589
981349
. 016305
. 052510
. 090020
. 128897

NNNNRPRPPRPPPRPPOOOOOOOOO

Lat

(deg)

9164123332
0552944014
1263610163
0552944014
9164123332
0552944014
3120791908
0106632645

(deg)
-179
-90
-1

89
90
91
179
180

-179
-90
-1

90
179
180
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

3000000
4000000

0
1000000
2000000
3000000
4000000

0
1000000
2000000
3000000
4000000

0
1000000
2000000
3000000
4000000

1000000
1000000
2000000
2000000
2000000
2000000
2000000
3000000
3000000
3000000
3000000
3000000
4000000
4000000
4000000
4000000
4000000

m 10.4 Administrative rules

135.
116.
-90
-90

90
90
-63.
-45.
. 0000000000
45.
63.
-45.
- 26.
. 0000000000
26.
45.

0000000000
5650511771
0000000000
0000000000
0000000000
0000000000
4349488229
0000000000

0000000000
4349488229
0000000000
5650511771

5650511771
0000000000

-77.
-70
-72.
-81.
-90
-81.
-72.
-70.
-77.
-81.
-77.
-70.
- 64.
-70.
-72.
-70.
- 64.

3120791908
0552944014
1263610163
0106632645
0000000000
0106632645
1263610163
0552944014
3120791908
0106632645
3120791908
0552944014
9164123332
0552944014
1263610163
0552944014
9164123332

2014-03-25

For standard uses at DaoD, there are amendments to UPS as defined above, called administrative rules. The mathemat-
ics does not require them. They are: (i) north UPS coordinates (Z =1) may be used for the region defined by

¢ =84 deg, and (ii) south UPS coordinates (Z = —1) may be used for the region defined by ¢ < —80 deg.

m 10.5 Hierarchy of subroutines

The suggested hierarchy of subroutines (where calls are made to subroutines further down the list) is the following:

UPS with administrative rules

UPS

polar stereographic general forms

routines to convert between kg and ¢,

polar stereographic basic form
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11. Military Grid Reference System (MGRYS)

The Military Grid Reference System (MGRS) is the pair, UTM and UPS taken together, with some digits dropped or
replaced by letters and with other notations and rules added. Subsections 11.1 to 11.8 specify the UTM to MGRS
conversion, and Subsections 11.9 to 11.12 specify the UPS to MGRS conversion. The inverse conversion, MGRS to
UTM or UPS, is explained in Subsections 11.13 and 11.14. The section ends with a re-print of some old but still valid

tables about MGRS |ettering.

The agenda of this document is the programming logic needed by the software developer. Basic explanations of
MGRS for land navigation and policies for tactical forces to report positions or define operational areas are outside
the scope of this document.

m 11.1 Character string for the UTM portion of MGRS

The UTM portion of MGRS is the following sequence of |etters and digits. From left to right they are:

(i) One or two decimal digits, representing the UTM zone number in absolute value

(ii) A letter intherange "C" to " X", representing an interval of latitude
(iii) Two letters — an easting letter and a northing letter — representing a square that is 100000 meters on a

side

(iv) Zero to five decimal digits, representing the UTM easting to desired precision
(v) The same number of decimal digits, representing the UTM northing to the same precision

To facilitate machine-to-machine communication, an MGRS string is to have no intermediate spaces or punctuation
marks and all the letters are to be capitals. Letters “I” and “O” are never used. For (i), if the UTM zone number is
less than 10 in absolute value, a leading zero is preferred but not mandated. Consequently, software for information
processing should accept both 5SNAB123123 and 05NAB123123, for example, but should produce only O5N-
AB123123. End-user devices and map margin notes may show SNAB123123.

m 11.2 Lettering scheme “AA”

This subsection specifies one of the schemes for picking two letters to represent the 100000 meter square, i.e. item

(iii) of Subsection 11.1.

Let Zbethe UTM zone and {x, y} bethe UTM easting and northing (in meters) of a point within these limits:
100000 < x < 900000

0=<y<9700000 if Z>0
300000 < y < 10000000 if Z<0

The 100000 meter square identifier consists of an easting letter followed by a northing letter. The easting letter is the

conversion of Floor (x/100000) according to the following set of tables:

112131415

6

8

AlB|C E

O

F

0 Rl

H

11213 5

6

4
JIKJLIMIN

P

8
R

112131415

6

7
Q
7

8

S|T|U]V

X

Y

z

, ifMod([Z],3)=1

, ifMod(|Z],3)=2

, ifMod(]|Z],3)=0

where, for n> 0, Mod (n, 3) isthe remainder when nisdivided by 3.

The northing letter is the conversion of Floor (Mod (y, 2000000)/100000) according to the following set of tables:

0112|134

5

6

=

8

9

10

11

12

13

14

15

16

17

18

19

AlB|C|DJE

F

G

H

J

K

L

M

N

P

Q

R

S

-

U

V

oj11213\|4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

FIGIH]J |K

L

M

N

P

Q

R

S

T

U

Vv

A

B

C

D

E

L if |Z] isodd

, if |Z] iseven

Notice that the letters “1” and “O” are deliberately omitted from the above tables. The notation “AA” for this lettering
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scheme comes from the fact that for Z = 1 (and other Z), the southwest corner of alowed values of {X, y} issquare AA.

m 11.3 Lettering scheme “AL”

This subsection specifies another scheme for picking two letters to represent the 100000 meter square, i.e. item (iii) of
Subsection 11.1.

Let Z be the UTM zone and {x, y} be the UTM easting and northing of a point within the same limits as for scheme
“AA”.

The 100000 meter square identifier consists of an easting letter followed by a northing letter. The easting letter is the
same as for scheme“AA”.

The northing letter is the conversion of Floor (Mod (y, 2000000) /100 000) according to the following set of tables:

01123456718 |9]10 |11 |12 |13 |14 |15]|16|17]|18]19

L D e 3 S L A S R R D B B e e e R

O(112]3|4|516]7(|8]19]10111112|13|14|15]|16|17]|18]19

RS OVIAECIoE T o TR T TR T VNP ol 14! iseven

Notice that the letters “I1” and “O” are deliberately omitted from the above tables. The notation “AL” for this lettering
scheme comes from the fact that for Z = 1 (and other Z), the southwest corner of allowed values of {x, y} issquare AL.

m 11.4 Which lettering scheme to use
This subsection pertainsto item (iii) of Subsection 11.1
For all usages of MGRS within the WGS 84 datum and €ellipsoid, the lettering scheme to use should be“AA”.

If not operating within the WGS 84 datum, the | ettering scheme to use depends on the reference ellipsoid to which the
UTM coordinates refer. If the reference ellipsoid is Bessel 1841 (Ethiopia, Asia) (BR), or Bessel 1841 (Namibia)
(BN), or Clarke 1866 (CC), or Clarke 1880 (CD), or Clarke 1880 (IGN) (CG), then scheme “AL” isto be used. For all
other ellipsoids, scheme “AA” isto be used.

m 11.5 Lettering schemes on old maps

MGRS predates the establishment of WGS 84 and was invented when no global 3D geodetic datum had yet gained
preeminence. Consequently, MGRS historically employed at least the two lettering schemes explained — "AA" and
"AL". This was done to highlight a change of datum when crossing into an adjacent area on a competing datum. (A
change in datum is usually accompanied by a change in reference ellipsoid). A review of the inventory of U.S. and
NATO maps and charts to investigate this further is outside the scope of this document, but the following should be
mentioned as an example of the Subsection 11.4 rule:

The horizontal datum for the United States for many decades of the 20th century was the North American Datum of
1927 which uses the Clarke 1866 €ellipsoid. When an MGRS position is specified using this datum, as may happen
with old maps of U.S. military installations, lettering scheme“AL” is used.

Also to be found are usages of “AA” and “AL” outside of the Subsection 11.4 rule and letterings compliant with
neither “AA” nor “AL”. Edition 1 of [11] contains an advisory worth repeating here: "Users are cautioned that
deviations from the combined AA-or-AL lettering schemes were made in the past. These deviations were an attempt
to provide unique grid references within a complicated and disparate world-wide mapping system."

The foregoing has implications for the software developer. The Subsection 11.4 rule should be segregated and made
into a separate table with room for amendment and not combined with the logic of Subsections 11.2 and 11.3. Fur-
ther, if new lettering schemes are discovered and software support for them is wanted, the logic for them should be
patterned after Subsections 11.2 and 11.3. For example, lettering scheme “AF” is built on the pattern of “AA” and
“AL”.

m 11.6 Precision and digits

Let {X, y} bethe UTM coordinates to be converted to an MGRS string. The rules for MGRS provide a choice of six
levels of precision. With each level of precision, thereis afixed number of digits for the easting and the same number
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of digits for the northing. Seeitems (iv) and (v) of Subsection 11.1.

Precision no. of digits
(meters) (n)

1 5
10 4
100 3
1000 2
10,000 1
100,000 0

Let n be the number of easting digits to be displayed in the MGRS string. For n= 0, there are no digits to be dis-
played. For n> 0, the easting digits are those of the number Floor (Mod (x, 10°) /105 ") and the northing digits are

those of the number Floor (Mod (y, 10°)/10°""). The number 10°~" is the precision in meters corresponding to n.
This completes the specification of items (iv) and (v) of Subsection 11.1.

m 11.7 Latitude band letter

The MGRS latitude band letter, i.e. item (ii) of Subsection 11.1, is the conversion of Floor (¢/(8deg)) to a letter
according to the following table:

-111-101-9]-8|-7|-6]-5]1-4]-3|-2]|-110|1})2]|3}|4]|5]6])7]8]|9]10
C|CID|IEJF]GIH]|J]|K]|LIMIN]PIQIR|S|TJUIVIW]IX]X

where latitude ¢ liesin theinterval —88deg < ¢ < 88deg. Theletters“C” and “X” occur twice as shown.

Consequently, the UTM to MGRS conversion reguires also the UTM to Lon./Lat. conversion. This means executing
the inverse mapping eguations for transverse Mercator (Eq. 5.16) with, of course, the parameters for UTM (Subsection
7.1). Thisisnecessary to obtain the latitude ¢ required above.

m 11.8 Latitude band letter example

Here is an example of the UTM portion of MGRS and the nuisance caused by the latitude band letter. The example
uses the WGS 84 ellipsoid.

13VFC4966108679 A point in western Canada near 102.6°W, 56°N
.10, . 0L Move 10 min the easting direction
13VFC4967108679 New position after the move, so it would seem,
but the latitude band letter “V” is not correct
13UFC49671086729 Correct new position

UTM is independent of longitude/latitude when doing displacement calculations of the above kind. This is not true
for MGRS as the above example shows. Application-software devel opers should be aware of this and do al plane-
geometry calculationsin UTM and only use MGRS to convert the inputs or outputs, as needed.

m 11.9 Character string for the UPS portion of MGRS
For the UPS portion of MGRS, a sequence of letters and digitsis specified from left to right as:

(i) Three letters — two easting letters and one northing letter — representing a square that is 100000 meters
onaside

(it) Zero to five decimal digits, representing the UTM easting to desired precision

(i) The same number of decimal digits, representing the UTM northing to the same precision
To be strictly correct and to facilitate machine-to-machine communication, an MGRS string is to have no intermediate
spaces or punctuation marks and all the |etters are to be capitals. Letters“1” and “O” are never used.

m 11.10 Lettering scheme “UPS north”

This subsection specifies the scheme for picking two letters to represent the 100000 meter square for the UPS portion
of MGRS, i.e. item (i) of Subsection 11.9, when the UPS zone is north, i.e. Z = 1.
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Let Z = 1 be the UPS zone, and let {X, y} be the UPS easting and northing (in meters) of a point within these limits:
1300000 < x < 2700000
1300000 < y < 2700000

The 100000 meter square identifier consists of two easting letters followed by a northing letter. The two easting
letters are the conversion of Floor(x/100000) according to the following table:

13|14 |15]116 17|18 ]|19]20)21]|22]|23|24]|25 |26
YRIYS|YT [ YULYX]|YYYZ|ZA|ZB|ZC|ZF | ZG|ZH|Z]

Note that YU is followed on theright by Y X (skipping YV and YW) and ZC is followed on the right by ZF (skipping
ZD and ZE).

The northing | etter is the conversion of Floor(y/100000) according to the following table:

13|14 |15]16 |17 |18 ]|19]20)21 22|23 |24 |25 |26
AIB]JCIDIE]JF]JGIH]JJ]IK]JL]IMIN]P

Noticethat the letters“1” and “O” are deliberately omitted from the above tables.

11.11 Lettering scheme “UPS south”

This subsection specifies the scheme for picking two letters to represent the 100000 meter square for the UPS portion
of MGRS, i.e. item (i) of Subsection 11.9, when the UPS zone is south, i.e. Z = —1.

Let Z = -1 bethe UPS zone, and let {X, y} be the UPS easting and northing (in meters) of a point within these limits:

800000 < x < 3200000
800000 < y < 3200000

The 100000 meter square identifier consists of two easting letters followed by a northing letter. The two easting
letters are the conversion of Floor (x/100000) according to the following table (shown in two pieces):

819 |10)11]112 |13 |14 151617 |18]19
AJ JAKTAL [APJAQJARTAS [AT AU AXTAY |AZ

2012112212324 |25]|26)27 2829|3031
BA|BB|BC|BF |BG|BH|BJ | BK|BL | BP | BQ|BR

Note that AL isfollowed on the right by AP (skipping AM and AN) and that other skips occur. The northing letter is
the conversion of Floor (y/100000) according to the following table (shown in two pieces):

819 |10|11})12}|13|14|15]|16}|17|18]19
AIBJCIDIJE]JF]|GIH]J]K]JL[M

20121122123 |24 |25]|26 27|28 |29]30]31
NIPIQIRIS]JTJUIV]IW]IX]Y]Z

Noticethat the letters“1” and “O” are deliberately omitted from the above tables.

11.12 Precision and digits

Let {Xx, y} be the UPS coordinates to be converted to an MGRS string. There is a choice of six levels of precision.
The rules about this are the same as for the UTM portion of MGRS in Subsection 11.6 and are repeated here. With
each level of precision, there is afixed number of digits for the easting and the same number of digits for the northing
asfollows:

Precision no. of digits
(meters) (n)
1 5

10 4
100 3
1000 2
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10,000 1
100,000 0

Let n be the number of easting digits to be displayed in the MGRS string. For n= 0, there are no digits to be dis-
played. For n> 0, the easting digits are those of the number Floor (Mod (x, 10°)/105") and the northing digits are
those of the number Floor (Mod (y, 10°)/10°""). The number 10°~" is the precision in meters corresponding to n.
This completes the specification of items (ii) and (iii) of Subsection 11.9.
This subsection compl etes the specification of the UPS portion of MGRS.

m 11.13 Conversion of MGRS to UTM or UPS

If the first character of an MGRS string is a digit, the string belongs to the UTM portion of MGRS and can be con-
verted to UTM coordinates. Otherwise the string belongs to the UPS portion of MGRS and can be converted to UPS
coordinates. In all cases, the easting x is obtained by:

X = 100000 Xjetter + 105_n Xdigits
where X iS the number listed in the appropriate | ettering-scheme table for the given easting letter(s) and Xgigits is the
number defined by the n given easting digits, assuming some easting digits were given. If no easting (northing) digits
are given, then Xgigits = 0.
For the UPS portion of M GRS, the northing y is obtained by:

y = 100000 Yietter + 10°™" Yisigits

where Yierer iS the number listed in the appropriate |ettering-scheme table for the given northing letter and yiigits is the
number defined by the n given northing digits. If no easting (northing) digits are given, then ygigis=0. This con-
cludes the MGRS to UPS conversion.

If the first character of the MGRS string is a digit, the string belongs to the UTM portion of M GRS, as has been said.

The UTM Zone number Z is the leading digit(s) of the MGRS string, taken as a positive number if the MGRS latitude
band letter isin the range N-X and taken as a negative number if the latitude band letter isin the range C-M.

Obtaining the UTM northing y requires several steps. A preliminary northing Ypreim is obtained by:

Ypretim = 100000 Yietter + 10°" Ydigits
where, like above, Viater iSthe number listed in the appropriate lettering-scheme table for the given northing letter and
Ydigits 1S the number defined by the n given northing digits. If no easting (northing) digits are given, then ygigits= 0.
Then the northing y is cal cul ated:

y=2000000 Ypand + Yprelim
where Ypang 1S the choice among 0,1,2,3 and 4 that satisfies the requirement that converting the obtained UTM coordi-
nates {x, y} back to {a, ¢} yields a latitude ¢ lying in the given MGRS latitude band (see Subsection 11.7). To help
choose among 0,1,2,3 and 4, a trial value may be obtained from row 2 of the following table. The first row is the

MGRS latitude band letter; the other rows give the possible values of ypag. FOr some columns (e.g. column “E”),
there is only one possibility and the trial value is the actual value. In such cases, a UTM-to-Lon/Lat calculation is not

needed.
CIDIE|JF|G|H|J|K|LIMIN]|PIQIR]S|T|U]V W |X
111112123 ]|3]41414(|0]0JoJ21]1]2]12]13]|3]3
ojfo 1 2 3 1 2 3 414

m 11.14 MGRS to UTM conversion example
An example of aMGRS-to-UTM conversion is now given. Consider the MGRS string 06STB1980012345 for a point
in the central Pacific referred to the WGS 84 ellipsoid. Picking it apart, in order, gives UTM absolute zone 06,
latitude band S, easting letter T, northing letter B, easting digits 19800, and northing digits 12345. The UTM zoneis
Z =6, (rather than Z = —6), because S fals in the sequence N-X. The easting is considered first. Since
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Mod (]Z], 3) = Mod (6, 3) = 0, entering the Section 11.2 tables with T yields Xeer = 2. Note that the precision is one
meter using n =5 digits. Combining Xeter = 2 With Xigits = 19800 gives x = 219800 meters for the UTM easting.
The northing is considered next. Since |Z| = 6 is even, entering the Section 11.2 tables with B yields Vyjeter = 16.
Combining VYieter = 16 With Ygigits = 12345 gives Ypraim= 1612345 meters. The Section 11.13 table under S'is
consulted to obtain the possible values ypang = 1, 2. They generate the possibilities y; = 3612345 or y, = 5612345
for the UTM northing y. The coordinates (x, y;) convert to A = —149.98596 deg and ¢ = 32.61320deg. The Section
11.7 table is entered with the calculation Floor (¢ /(8 deg) ) = 4 to re-abtain S as the MGRS latitude band letter. This
decidesin favor of y; over y,. Therefore, the UTM coordinates are x = 219800 and y = 3612345 in zone Z = 6.

m 11.15 Legacy tables for the lettering schemes

The methods of this Section to find the easting/northing letters given the numerical (X, y) coordinates employed the
one-dimensional tables found in Sections 11.2, 11.3, 11.10, and 11.11. This provided succinct logic for the software
developer. The equivaent and familiar two dimensional tables for lettering schemes “AA” and “AL” are provided
(newly printed) on the next two pages. For the two dimensional version of the UPS-related lettering scheme tables,
see the plotsin Section 15.
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12. Topics in MGRS

The agenda of this document is the programming logic needed by the software developer. For MGRS, this is covered
in Section 11 — in one sense, covered completely. But it is prudent to take notice of some related issues, and thisis
done here.

m 12.1 Formal definition of MGRS

Section 11 adopts a formal point of view, i.e. MGRS is merely a respelling of UTM or UPS coordinates truncated to
the desired precision. If the administrative rules (Subsections 7.4 or 10.4) were in effect when the UTM or UPS
coordinates were produced, they remain in effect when these coordinates are converted to MGRS. If the UTM or UPS
coordinates were produced outside the administrative rules, they can yet be converted to MGRS provided they satisfy
the inequalities for x and y given for the relevant lettering scheme, i.e. the inequalities in Subsections 11.2, 11.3
(implied), 11.10 and 11.11.

If the UTM or UPS coordinates {x, y} are both multiples of the desired MGRS precision, 10°~" (see Subsection 11.6),
then the double conversion UTM - MGRS —» UTM vyields the original coordinates {X, y} exactly. With no changein
the desired precision, the double conversion MGRS - UTM — MGRS yields the origina MGRS string. Likewise for
UPSin place of UTM. All thisistrue when keeping to the principles of Section 11.

m 12.2 Administrative rules
The intended usage of MGRS is meant to comply with the administrative rules of Subsections 7.4 and 10.4.

At some level of the software hierarchy, the MGRS conversion routines should be written in accordance with Section
11. Thiswill alow the crossing of an administrative-rule boundary when necessary or when convenient and allowed.
At a higher level, the administrative rules may be enforced in software. The goal is to keep UTM/UPS synchronized
with MGRS. In any situation, the administrative rules should be applied to both or neither; they should not be applied
to only one.

= 12.3 Rounding v. truncating

The intended usage of UTM and UPS coordinates for the calculating or recording of positions complies with the usual
rounding rules of science and engineering. When a precise coordinate, e.g. X =512378 m, is to be converted to a less
precise coordinate, e.g. X =512380 m or x=512400 m, the operation is rounding, not dropping of digits (truncating).

For UTM (and UPS) conversions to MGRS, the operation is truncating, not rounding (see Section 11). Continuing the
above example, x = 512 378 m becomes x = 512 370 m (easting digits 1237) or x = 512300 m (easting digits 123).

For the reverse conversion, i.e. MGRS to UTM or MGRS to UPS, if the requirement is for the best UTM or UPS
position rather than for a defined area’s bottom-left corner (discussed next), one-half the precision should be added to
the result of the Section 11 conversion. For example, if the given easting digits are 1237, the meaning of those digits
isa 10 meter interval from (say) x =512370 m to x = 512380 m and the appropriate value of x would be x = 512 375
m.

m 12.4 Pointv. area

MGRS is aso an area identification scheme. If there are n easting digits (with the same number of northing digits),
the MGRS string defines a square in the UTM or UPS plane whose side is 10°~" meters and whose bottom left corner
is the UTM or UPS equivaent of the MGRS string (using Section 11 for the conversion). For non-polar areas, the
bottom |eft corner is the southwest corner.

The administrative rules are amended to allow some MGRS strings as area identifiers that would not be alowed as
point identifiers. Point vice areais an important distinction. Here is an example: The administrative limits for UTM
zone (-53) are 132deg < A < 138deg. Point 53ELR2520014100 lies east of 132°E and is compliant. It belongs to
area 53ELR2514, whose southwest corner is point 53ELR2514 or point 53ELR2500014000 (to use a consistent
precision for points, in this example). Almost al of area 53ELR2514 lies east of 132°E. But the corner point 53EL-
R2500014000 lies west of 132°E and is therefore non-compliant. (See the figure in this subsection). Zone (-53)
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should not be used for this point. Its administratively correct specification is point 52EFA7482914007 in the next
zone westward, i.e. zone (-52). But no good will come of this conversion. String 52EFA 7482914007 has the wrong
precision to identify the desired area (1000-meter square) and truncating it to 52EFA7414 (the desired precision)
defines adifferent area. (Thisis an example of agenera principle: it isimpossible to simultaneously specify an area
of the earth by UTM zone (-52) grid-lines and by UTM zone (—53) grid-lines, even if the administrative rules are
completely abandoned). Therefore the administrative rules are amended to say that athough “53ELR2514” is not
allowed as the specification of a point, area 53ELR2514 shall mean the portion of this 1000-meter square east of
132°E.

15000

1 4800

1 4600

1 4400

1 4200

1 4000 4T

25000 25200 25400 25600 25800 26000

1000-meter square 53ELR2514 (gray) with intersection by meridian 132E (red)

m 12.5 Latitude band letter — efficiency — northern hemisphere

Because various characteristics of MGRS are unhelpful to analytica work (see Subsection 11.8), this document
suggests (but does not mandate) the following division of labor between MGRS and UTM/UPS when both are under
consideration. UTM/UPS should be be used for calculations, analytical work, and storage & retrieval of geographic
information; MGRS should be limited to notations on maps and charts, displays on end-user devices and person-to-
person or person-to-machine communication. Therefore, there would not seem to be a great need for efficiency in the
conversion algorithms between UTM/UPS and MGRS, as large data sets that would consume computer resources
should already be stored in UTM or UPS coordinates.

The above notwithstanding, there could be occasions where these conversion agorithms need to be efficient. The
UPS-to-MGRS algorithm and its inverse present no issues. The UTM-to-MGRS agorithm and it inverse, however,
could be improved for efficiency. Theissueisthe latitude band letter.

For the UTM-to-M GRS conversion, rather than always execute the UTM-to-Lon./Lat. agorithm to obtain the latitude
and thus the latitude band letter, the software should invoke the following table for the northern hemisphere. For each
paralel circle, the table provides two staircase-like functions that envelope the parallel — one on its north side; the
other on its south side. This alows a table look-up to complete the latitude band letter determination for the vast
majority of cases. All x and y values in the table are kilometers on the UTM plane. For the MGRSto-UTM conver-
sion, this table obviates the need for an execution of the UTM-to-Lon./Lat. algorithm. (See the examples in Subsec-
tion 12.7). Thetableisvalid for any reference ellipsoid listed in Section 4.
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y-val ue for y-val ue for y-val ue for y-val ue for

Lat . 500 < x <600 600 <x <700 700 < x < 800 800 < x <900

(deq) (_km) (_km) (_km) (_km)
Latitude band X

72 7992 7999 8011 8029

72 7988 7990 7997 8009
Latitude band W

64 7099 7104 7112 7123

64 7096 7097 7102 7110
Latitude band V

56 6208 6211 6217 6225

56 6205 6206 6210 6215
Latitude band U

48 5318 5320 5325 5331

48 5315 5316 5319 5323
Latitude band T

40 4429 4431 4434 4439

40 4427 4427 4429 4433
Latitude band S

32 3541 3543 3545 3549

32 3540 3540 3542 3544
Latitude band R

24 2655 2656 2658 2660

24 2653 2654 2655 2657
Latitude band Q

16 1770 1770 1771 1773

16 1768 1768 1769 1770
Latitude band P

8 885 885 886 887

8 884 884 884 885
Latitude band N

0 0 0 0 0

(A subroutine to convert Lon./Lat. to MGRS by combining the guidance in severa sections of this document will not
need efficiency improvements like the above. The latitude is a given input item; the latitude band letter is easily
determined by Subsection 11.7).

m 12.6 Latitude band letter — efficiency — symmetry of tables
On the other side of the line x = 500000, symmetry is applied as if the headings of the tables in Subsections 12.5 and

12.8 were:
y-val ue for y-val ue for y-val ue for y-val ue for
Lat . 400 < x <500 300 < x < 400 200 < x < 300 100 < x < 200
(deq) (_km) (_km) (_km) (_km)

m 12.7 Latitude band letter — efficiency — examples

To convert {x, y} = {705000, 1765123}, use the column 700 km < x < 800km and find that y=1765123 is safely in
band P becauseit is south of y = 1769 km and north of y = 886 km.

To convert {x, y} ={705000, 1769123}, which is the point displaced 4000 meters more in northing, the UTM-to-
Lon./Lat. algorithm will have to be executed because y= 1769123 liesbetween y=1769kmand y = 1771km.

Let 31SFR1500042887 be given as an MGRS string for an ellipsoid that uses lettering scheme “AA”. This example
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finds the corresponding UTM coordinates. The UTM zoneis Z = +31. The easting letter is “F’ which by the tables
of Subsection 11.2 represents 6, i.e. 6 x 10° = 600000 meters. Add the easting digits to get x= 615000. The northing
letter is “R”, which by the same tables of Subsection 11.2 represents 15, i.e. 15 x 10°meters, which is understood to
stand for 1500000 + 2000000k meters for k=0, 1, 2, 3, or4 (to be determined). Add the northing digits to get
y=1542887 +2000000k. In other words, the candidates for y are 1542887, 3542887, 5542887, 7542887 and
9542887, which ambiguity is to be resolved by the latitude band letter “S’. Consulting the table in Subsection 12.5
under column 600km < x < 700km, we see that y=3542887 lies inside the expanded limits of band S, i.e.
y =3540kmto y=4431km. Therefore, y=3542887.

m 12.8 Latitude band letter — efficiency — southern hemisphere
The table for the southern hemisphere follows. It isvalid for any reference ellipsoid listed in Section 4.

y-val ue for y-val ue for y-val ue for y-val ue for

Lat . 500 < x <600 600 <x <700 700 < x < 800 800 < x <900

(deq) (km) (km) (km) (_km)

0 10000 10000 10000 10000
Latitude band M

-8 9116 9116 9116 9115

-8 9115 9115 9114 9113
Latitude band L

-16 8232 8232 8231 8230

-16 8230 8230 8229 8227
Latitude band K

-24 7347 7346 7345 7343

-24 7345 7344 7342 7340
Latitude band J

-32 6460 6460 6458 6456

-32 6459 6457 6455 6451
Latitude band H

-40 5573 5573 5571 5567

-40 5571 5569 5566 5561
Latitude band G

-48 4685 4684 4681 4677

-48 4682 4680 4675 4669
Latitude band F

-56 3795 3794 3790 3785

-56 3792 3789 3783 3775
Latitude band E

-64 2904 2903 2898 2890

-64 2901 2896 2888 2877
Latitude band D

-72 2012 2010 2003 1991

-72 2008 2001 1989 1971

Latitude band C

m 12.9 Latitude band letter — leniency

Many software programs allow some leniency in the latitude band letter during the MGRS-to-UTM conversion

process. The example of Subsection 11.8 isacase in point. In that example, the string 13VFC4967108679 is invalid

by the rules of Section 11, and would have to be rejected and not converted. (An error message would be helpful).

Opposed to this, both 13UFC4967108679 (valid) and 13VFC4967108679 (invalid) convert to Z=+13,

{x, y} ={649671, 6208679} by the application of the latitude-band-letter efficiency table of Subsection 12.5 (and see

Sub-subsection 12.7.3). So, it would seem that the error in the Latitude band letter is recoverable in this case and
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maybe shouldn’t be called an error. Again, thisleniency is outside the definition of MGRS in Section 11.

Of the choice to be lenient or not, many system devel opers adopt the more generous view and apply it to cases more
aggressively in the wrong latitude band than the above example. If this practice is to be alowed, this document
should offer some guidance. The purpose of the latitude band letter — the only purpose with respect to the algorithms
at issue — is to resolve the 2000000 k meters ambiguity in the northing where k is one of the integers 0, 1, 2, 3, or 4.
The design of aleniency rule has to include the requirement that a candidate MGRS string that is off by one latitude
band letter but otherwise valid converts to the intended UTM coordinates.

m 12.10 Latitude band letter — leniency rule

For the UTM to MGRS conversion, there is no leniency — the latitude band letter is to be computed correctly by the
foregoing principles. For the MGRS to UTM conversion, the following leniency rule is to be applied to decipher a
candidate MGRS string: Give each “latitude band” (hereafter, bloated latitude band) a much larger area. Refer to the
tables in Subsections 12.5 and 12.8. For each latitude band other than C and X, start with the pair of staircase func-
tions immediately above and below it. Modify these to create new limits for the band. Modify the y-values to move
the northern limit of each band another 400000 meters further north and to move the southern limit 400000 meters
further south. For latitude bands C and X, expand 200000 meters in the direction toward the Equator. Then if none
of the 5 choices for value of y (see above, where k equals 0,1,2,3 or 4) falls into the bloated latitude band correspond-
ing to the given letter, the candidate MGRS string isinvalid and cannot be converted.

The above leniency rule is quite lax, while yet retaining the ability to resolve the 2000000 k meters ambiguity in the
northings. For quality assurance of imported geographic data, analysts may devise and perform more stringent tests to
filter-out candidate MGRS datafor further review before acceptance.

m 12.11 MGRS-UTM hybrid

Nothing in this document prohibits DoD components and their contractors from employing a mixture of UTM and
MGRS information for displays on end-user equipment or for margin notes on printed maps, etc. Prominent in this
category isthe following MGRS-UTM hybrid:

(i) UTM zone number in absolute value

(ii) MGRS latitude band | etter

(iii) UTM x-coordinate (Easting) to precision 1 meter
(iv) UTM y-coordinate (Northing) to precision 1 meter

As an example, hereis apoint specified three ways:

UTM (stored internally): Zone = +31, x =345009, y =6700123
MGRS: 31VCH4500900123
MGRS-UTM hybrid: 31V, 345009nE, 6700123nmN

Details of the format and wording of margin notes and device displays are outside the scope of this document. See
[11] for guidance and these remarks. From the information-content point-of-view, the MGRS latitude band letter
belongs to MGRS, not UTM. For greater readability the above example appends “nE” for meters east and “m\’ for
meters north, as shown. Also for readability, UTM may show “31 north” in place of “+31", but the capital letters“N”
and “S’ may not be used as abbreviations for north and south.

Hereis another example. Itis 10, 000, 000 meters less in northing, and on the other side of the Equator:

UTM (stored internally): Zone = +31, x =345009, y =-3299877
UTM (stored internally): Zone = -31, x =345009, y =6700123
MGRS: 31JCH4500900123

MGRS-UTM hybrid: 31J, 345009nE, 6700123nmN

The suffix “mN” for “meters North” isto be used for points on both sides of the Equator.
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13. MGRS Quick-Start

The guidance given to this point has assumed that the routines for processing MGRS are part of a larger package of
map projection and coordinate conversion software to include UTM and UPS and, more generally, transverse Merca-
tor and polar stereographic routines.  When these are available, the additional code to implement MGRS is merely a
few table look-ups (see Sections 11 and 12; note some exceptions), and MGRS is efficiently linked to UTM and UPS.

Modern positioning (e.g. GPS technology) is in pursuit of centimeter accuracy. This manual’s conversions between
Lon./Lat. and UTM support such agoal but MGRS does not. Consequently and for other reasons, the devel opment of
transverse Mercator and UTM in this document is more extensive than needed for MGRS. UTM is recommended for
serious analytical work with grid coordinates but some software developers might need only MGRS. For them, this
section provides some short-cuts. Some short cuts are for the reader; some are for the machine.

This section provides guidance for converting directly between longitude/latitude and MGRS. Only the UTM portion
of MGRS is considered. Only the WGS 84 ellipsoid is considered. The administrative rules apply. The chosen
precision for MGRS will be 1 meter. For aspects of MGRS outside this agenda, see the full treatment in Sections 11
and 12 and the earlier sectionsto which they refer. Sections 1, 2, and 3 are prerequisite.

m 13.1 Given Lon./Lat. compute MGRS

The procedure to compute MGRS from longitude and latitude is given as a series of steps to be followed in the order
given.

13.1.1) Let LonD and Lat D be the given longitude and latitude in decimal degrees of the point to be converted.
Points north of the Equator have positive latitudes; points south have negative. Points east of the nominal Greenwich
meridian have positive longitudes; points west have negative.

If Lat D< -80 or Lat D > 84, the point cannot be converted to the UTM portion of MGRS and an error message
should be issued.

13.1.2) The set of allowed central meridians in degrees is the list -177 to +177 by increment of 6. Find the
member of this list closest to LonD and cal it CMleg. The UTM absolute zone number is calculated
absZ = (CMdeg + 183) /6.

13.1.3) If LatD= 56 and 0 < LonD < 42, an adjustment to CMleg from Step 13.1.2 might be required. (See
Subsection 7.5).

13.1.4) Divide Lat D by 8 and discard the remainder, i.e. compute FI oor [Lat D/ 8]. Enter the following table
with the result to find the latitude band | etter.

-101-9]1-8|-7|-6]1-5]1-4]|-3|]-2|-1 10
CIDJEJF|GIH]IJ]K]JL|MIN|PIQIR|S|TJUIVIWIX]X

o
=
N
w
N
a1
o
~
o)
©

13.1.5) Convert the anglesin Steps 13.1.1 and 13.1.2 to radians. In other words, compute Lon = LonD « Pi / 180
andLat = LatD«Pi /180 and CM= CMleg = Pi / 180.

13.1.6) Next is needed the conformal latitude y or, rather, its cosine and sine. See Subsection 2.8 and use the formu-
lasthere. The valueto usefor e, the eccentricityise=+/ f (2— f) where f = 1/298.257223563.

13.1.7) Perform the computations of Eq. (3.8) to obtain the quantitiesu and v using A = Lon - CV for the value of 2
in those equations.

13.1.8) Compute cos(2V), cos(4V), sin(2v), sin(4v), directly or with help from Eq. (3.10)

13.1.9) Compute cosh(2u), cosh(4 u), sinh(2u), sinh(4 u), directly or with help from Eq. (3.12)
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13.1.10) Perform the computations of Eq. (3.7) in the following abbreviated way. (This is possible because the
computational accuracy required in this situation is merely one meter.)

X= R4 (U+ asinh(2u) cos(2v) + a4 sinh(4 u) cos(4v) )

y= R4 (V+ azcosh(2u)sin(2v) + a4 cosh(4 u) sin(4v))

13.1.11) Compute the UTM easting and northing as follows, where y isOif Lat = 0 and is 10000000 otherwise:

Xutm = (0.9996) x + 500000 truncated to 1 meter
Yum = (0.9996) y + Yeq truncated to 1 meter

13.1.12) Apply lettering scheme “AA” (see Subsection 11.2) to the numbers {Xym, Yutm} found in Step 13.1.11 with
|Z] there equal to abs Z here.

13.1.13) The MGRS string consists of the absolute zone number absZ from Step 13.1.2, followed by the latitude
band letter from Step 13.1.4, followed by the easting-letter obtained in Step 13.1.12, followed by the northing letter
obtained also in Step 13.1.12, followed the 5 least significant digits of xm obtained in Step 13.1.11, followed finally
by the 5 least significant digits of yym obtained also in Step 13.1.11.

m 13.2 Given MGRS, compute Lon./Lat.
The procedure to compute the longitude and latitude from MGRS is given as a series of steps to be followed in the
order given.

13.2.1) Check that the given MGRS string consists of 1 or 2 digits (the UTM absolute zone number absZ) followed
by aletter in the range C-X (the latitude band letter) followed by another letter (easting-letter) followed by another
letter (northing-letter) followed by 5 digits (easting-digits Xgigits) followed finally by 5 more digits (northing-digits
Yaigits)- None of the lettersmay be “1” or “O”. Other checks will arise in what follows.

13.2.2) The central meridian in degrees is computed CMleg = -183 + 6 « absZ. Its radian equivalent is
CM= CMleg = Pi /180.

13.2.3) Apply lettering scheme “AA” (see Subsection 11.2) in reverse to the easting-letter and northing-letter from
Step 13.2.1 to obtain their numerical equivalents Xeter and Vieer- Successful table look-ups should yield answers in
theranges 1 < Xjeter < 8 and 0 < Yjter < 19. Take |Z| there to be equal to absZ here.

13.2.4) Combine the above pieces of information according to the following equations to obtain the UTM easting Xym
and the UTM northing Yyim.

Xutm = 100 000 Xjetter + Xdigits

Yprelim = 100000 Yietter + Yaigits

Yutm = 2000000 Ypand + Yprelim
where Ypang 1S one of the numbers 0,1,2,3 or 4 to be determined. (The five candidates for ypang Yield five candidates
for yum.)

13.2.5) Determine ypang by one of these two methods. (i) Enter the latitude band efficiency tables of Subsections 12.5
and 12.8 with xum and the latitude band letter and the 5 candidate values of yum to see which onefits. Or, (ii) consult
the following table (from Subsection 11.13) to obtain the one or two possible values of Ypang , cOMpute yum for each
value and apply the remaining steps of this subsection to each y,m candidate to see which latitude (final answer) fits
the given latitude band.
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13.2.6) Compute the transverse Mercator coordinates x and y as follows, where ye is 10000000 if the latitude band
letter isamong C-M and is O if it isamong N-X:

X = (Xutm — 500000)/(0.9996)

Y= (Yum ~ Yeq) /(0.9996)

13.2.7) Apply the formulas and logic of Subsection 3.5 to the values for {x, y} from Step 13.2.6. The formulas for u
and v may be shortened as follows:

X 2x 2y 4x 4y
u=—+ bzsinh[—) cos(—] + b4sinh(—) cos(—]
Ry Ry Ry Ry Ry

y 2X 2y 4x 4y
v=—+ by cosh[—)sin[—) + by cosh(—)sin(—)
Ry R4 R4 Ry Ry
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14. United States National Grid

This section explains the United States Nationa Grid (USNG). It isincluded in this document because it is almost the
same as MGRS.

m 14.1 Definition of USNG

Like MGRS, the United States Nationa Grid (USNG) [5] is built on UTM coordinates (eastings and northings), a
lettering scheme for multiples of 100000 meters, and latitude bands. It adopted amost al of the rules of the UTM
portion of MGRS given in Section 11. The sole exception concerns the choice between lettering schemes “AA” and
“AL” in aparticular circumstance. The following table tells which schemeis used for which ellipsoid/datum:

Ellipsoid MGRS USNG
GRS 80 dllipsoid (used by the NAD 83 datum) AA AA
Clark 1866 ellipsoid (used by the NAD 27 datum) AL AA

For NAD 83, the MGRS and USNG systems are the same. For NAD 27, they are not.

m 14.2 USNG example
It isagoa of the U.S. federal government to convert al the land maps of the U.S. from NAD 27 to NAD 83. When
that happens, USNG will be identical to MGRS in usage because NAD 27 will be obsolete. In the meantime, a point
in Nevada at 117°W, 39°N (NAD 27) has these competing representations, differing at the northing letter. Note “P” v.
“D".

MGRS: 11SNP0000016568 (NAD 27)
USNG: 11SND0000016568 (NAD 27)

AN
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15. Diagrams for UTM, UPS and MGRS

The following pages are some plots that illustrate principles in this document. The depictions are informative for this

purpose only. For guidance on the portrayal of grids and graticules on DoD standard products, see [11].

Description

Figure

Figure 1

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16
Figure 17
Figure 18
Figure 19

Figure 20
Figure 21
Figure 22
Figure 23

Overview of UTM plane
(@) eastings and northings if zoneZ > 0
(b) eastings and northingsif zoneZ < 0
(c) relation to parallels
(d) MGRS representable portion
(e) MGRS latitude bands
(f) meridiansat £3°

UTM plane — north zones — 8400 kmN to 9800 kmN
UTM plane — north zones — 7000 kmN to 8400 kmN
UTM plane — north zones — 5600 kmN to 7000 kmN
UTM plane — north zones — 4200 kmN to 5600 kmN
UTM plane — north zones — 2800 kmN to 4200 kmN
UTM plane — north zones — 1400 kmN to 2800 kmN
UTM plane — north zones— 0 kmN to 1400 kmN

UTM plane — south zones — 8600 kmN to 10000 kmN
UTM plane — south zones — 7200 kmN to 8600 kmN
UTM plane — south zones — 5800 kmN to 7200 kmN
UTM plane — south zones — 4400 kmN to 5800 kmN
UTM plane — south zones — 3000 kmN to 4400 kmN
UTM plane — south zones — 1600 kmN to 3000 kmN
UTM plane — south zones— 200 kmN to 1600 kmN

UPS plane — north zone— x < 2000 kmE, y > 2000 kmN
UPS plane — north zone— x> 2000 kmE, y > 2000 kmN
UPS plane — north zone— x < 2000 kmE, y < 2000 kmN
UPS plane — north zone— x> 2000 kmE, y < 2000 kmN

UPS plane — south zone — x < 2000 kmE, y > 2000 kmN
UPS plane — south zone — x> 2000 kmE, y > 2000 kmN
UPS plane — south zone — x < 2000 kmE, y < 2000 kmN
UPS plane — south zone — x> 2000 kmE, y < 2000 kmN
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Figure 1. UTM plane for generic zone Z. All eastings and northings are in kilometers. (a) Northings if Z > 0.
(b) Northings if Z < 0. (c) Northings in common practice with parallels every 8° and the north and south poles.

62

2014-03-25



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

o S o 8 o S
o85S o838 o85S
710000 10000 710000
1 8000 72°N 8000 4 8000
: AL :
! 64°N !
: 56°N || :
1 6000 U 6000 +HH 6000
! 48°N !
i 40°N == ;
L— 4000 £5— 4000 L4+ 4000
i 32°N i
: R :
i 24°N i
1 1
2000 16N Q 2000 2000
| I-) |
i 8°N i
T 1 T
! 0 or 0°N IN 0 or ! 0 or
r:l 10000 alg | 10000 {10000
i Tyt i
T 8°S T
: :
= 8000 1675 >—1 8000 1 8000
| ;4 |
; 24°S !
; Em ;
: 32°S :
=} 6000 1+ 6000 4 6000
' 40°S |==t=— '
! G !
i 48°S ;
4000 £6°S 4000 : 4000
i
. 64°S .
: i :
: L :
1 2000 72°S 2000 -4 2000
1 (\ 1
: Y NN R
(d) (e M

Figure 1 (continued). (d) Portion of the UTM plane representable in MGRS, (e) MGRS latitude bands with their bounding parallels,
(f) Meridians at £3° of the central meridian and parallels at 80°S and 84°N, which are basic to the administrative rules for UTM and MGRS.

63



NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

s 3 i 3 3 3
86°N 3 ™ 88°N ) ~ >

=D S AP d %04 7 T A\ SN ] 9800

IR PO RN, TR NNNVANNN S RN
A IR AT I T ] BRI RIARNY MNOOORNNORS AN S
D% V7 7 A I OO NS

60° WP X I XX AT yArAIS AR AR NS KON NN 60°E

R 2ATTITT T QRN UNAY VA NA N A NS

r A A N . as \AA RN A NA NA N S
71 S/ 7 AT RRAARAS WNAD: ¢ ALY

¢ N ;/ 74 N\ \‘ N h

TS 4 ATAviNi AR \ PNIN

¢ < 7 yATiviN HEAVAVRYS < VA NA PR 9600

PO TS Y AT AT = @AY LW \NB A N B NI
84°N[ 17 yAViD v i i VA WAVAY ANA N S
A=Ay ApAY Ay /W aY/§arivEa A1 B VAR W\VAWAYD (A WA WA VA4
Sl awaN yin'Aa i I PN, 2| 45°E
7 A A TR \NE NANAN N
7 THKC y AV u i \VRNA 5% RN
7 AR A W i T A ] \C
/ N
7 71/ 7 ] 1 X \NEAY N 1x 9400
yAWAN AN SV HY NN R IRELE\VE V= R UAWAY N
7 /TR | [ 2 AVLVEILY AN \d
/l yal 17 11| \ N
/ AN I T LY a \
7 a4 Wy AmyImyImy I A I AVEAYEAVAVEAVEE BV X;
820N l, / I I \ \ \ \\
/1T \HAYE\NED
AR ARy T =D NN
/ 7 T T VIR 2\ 9200
y / 1 A \ X
sowli A IR B e NN 308
~ 111/ i - HEEET T \
AT/ ] ) \VER A
PARBIS 1 i { \ 2z AVEAN
/ 1 i { =
AT Iy EET VAV A VA
80°N i Y I ] I A W L =~ 9000
/ l | |/l A =
I I \
JAREYREy =N I | I o I VA
AR =T W AT = \

/ T == { A\
A HH HHHEREEEN
T SR

78°N / | | \ =

/ = / I { \ = \

== ] T =
/ i = == \ \

< ] [ { \ =
| / - A=A 8600
A ML EE A VRN

76°N ] | ] | | \
/ ] ] \
1 ] = T \ \
] i { \
/ I I I | \ 8400
15°w 122 9° e 3  0° 3 6 9 120 15

Fig. 2. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 3. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 4. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 5. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 6. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 7. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 8. UTM plane for arbitrary zone Z > 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 9. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 10. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 11. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 12. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 13. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
northings are in kilometers. Longitudes are relative to the unspecified central meridian. The region repre-
sentable in MGRS is shaded.
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Fig. 14. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and
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sentable in MGRS is shaded.
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Fig. 15. UTM plane for arbitrary zone Z < 0 showing grid-lines, meridians, and parallels. All eastings and

northings are in kilometers. Longitudes are relative to the unspecified central meridian.

The region repre-

sentable in MGRS is shaded.
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Fig. 16. UPS plane for Z = + 1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.
All eastings and northings are in kilometers.
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Fig. 18. UPS plane for Z

All eastings and northings are in kilometers.
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Fig. 19. UPS plane for Z = + 1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.
All eastings and northings are in kilometers.
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Fig. 20. UPS plane for Z = -1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

60-
O,
78°S
90°W



2014-03-25

NGA.SIG.0012_2.0.0_UTMUPS

> 8 8 © 8w 3 gw ¢ 8 =
x ® 3 L 3% Q NI SR S
dRVZNEd - Pl Ll
PN 0 AN 35 Y AN A =
JSEEYEND AR A NNE A
\A N} © BVA m? mwﬁ X 0 \% /B { /B LB m
\ wm\ > K EA\> UVA\HW 2] /\@4 /P/ - |
EEZAE EAP AR S AN NP S IR A
N > LNe RN B 1 0 i\l L -
FERYENZNE YA INZENN Y= AR AN An AP
ARVARYVEEARPENNS S UNNIES === nE
WS4 S AE e \D OrZ (NI SaliEan
T DT R L e LT
< N mva do vAmb /\&\/ dn \/mb/ dn \/mb/ me«vﬂmﬂ Mb/ mm
J“P/ IMENA £ KNGO &/\vﬂw w/ \ u_ m
0002 _\ 0 INL /mm/ i g & VVB g i ,i
ARV ANYINNZEN b N L
N/ o o \ i /xm/ 0 J_w/ fid i %m // 40 % \ﬂ DJ
e LA R R T,
WS/ SN A v N/ SHAN 7@ NS AR il
e T P TR S
S =S AR IR YR N NS SNV CAN N
e N N N ANt
0022 i \/B/ i /\mhm/ m//h /hm./\ BU ”& nm/ &mm\..ww
L/ L Jﬁw/ S /Eﬁ/nﬂ/nwﬂ o N X
[Tl d | i@ jw/J»B/ 0 —4p [Tl [ o/ 0 /B
— IZLIMY K = 15 w//‘N/&H /AwrN N Z
20 SRR s = ARl

Fig. 21. UPS plane for Z = - 1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

All eastings and northings are in kilometers.
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Fig. 22. UPS plane for Z = -1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

All eastings and northings are in kilometers.
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Fig. 23. UPS plane for Z = -1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

All eastings and northings are in kilometers.
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