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1.  General

� 1.1  Introduction

Earth features are commonly referenced by geographic coordinates — longitude and latitude.  However, these coordi-

nates  are  not  suitable  in  all  situations  to  report  positions  or  to  calculate  distances  or  directions.   To  perform  these

functions conveniently, grids and grid coordinate systems have been invented.  A national grid is devised by a national

authority and covers a single country (or part of it).  The universal grids, Universal Transverse Mercator (UTM) and

Universal  Polar  Stereographic  (UPS),  were  devised  by  the  U.S.  Department  of  Defense  (DoD)  and  taken  together

cover the whole Earth.  The Military Grid Reference System (MGRS) is the pair, UTM and UPS, after some reformat-

ting (e.g.  lettering) is applied to each.

� 1.2  Purpose and scope

This document defines the UTM, UPS and MGRS systems of coordinates and provides some information toward their

understanding and use in surveying, cartography, and geographic-information analysis.

Mainly,  though,  this  document  provides  guidance  to  DoD  and  DoD  contractors  for  the  software  implementation  of

algorithms to convert between longitude/latitude, UTM or UPS, and MGRS coordinates.  As a necessary step toward

that  end,  this  document  provides  guidance  for  the  software  implementation  of  the  transverse  Mercator  and  polar

stereographic  map  projections.   These  map  projections  are  endowed  with  parameters  for  general  utility,  of  which

UTM and UPS are particular instances.

It should be noted that the previous edition, [3], had these same purposes: to define UTM and to provide the formulas

for its implementation in software.  Moreover, this should be accomplished without partiality to a particular program-

ming  language  or  software  environment.   Existing  software,  even  if  it  were  open  source  and  government  provided

(e.g.  GeoTrans)  and  most  modern  and  up-to-date,  would  not  be  a  substitute  for  this  document.   Management  of

specific DoD procurements is outside the scope of this document.  Likewise also are the policies and procedures for

quality assurance of these procurements.  Yet, a general recommendation can be stated:  if the above conversions are

to be implemented anew, or if  existing software is to be modified (for the benefits below or for other reasons), then

this  document  should  be  used  to  direct  the  development  or  redevelopment.   This  will  yield  the  benefits  explained

below under “What’s new”.

A  companion  to  this  document  is  NGA  Standardization  Document  NGA.STND.0037_2.0_GRIDS,  “Universal  Grids

and Grid Reference Systems” [11].  DoD mapping and charting production elements should refer to it for guidance on

the proper depiction of UTM and UPS grids and MGRS labels on standard products.  

Although some explanations are offered in defense of what is new, this document is not designed as a tutorial.  It is

recommended to consult  the map projection literature for  the meaning and usefulness of  grid coordinates in general

and UTM, UPS and MGRS coordinates in particular.

� 1.3  Previous edition

This  document  replaces  technical  manual  DMA  TM8358.2  Edition  1,  “The  Universal  Grids:  Universal  Transverse

Mercator  (UTM)  and  Universal  Polar  Stereographic  (UPS)”,  dated  18  September,  1989.   Chapters  1-4  of  the  1989

technical manual are superseded by this document.  Chapter 5 dealt with datum transformations, which is a separate

topic and is not included in this document.  Datum transformations are included in Edition 3 and Edition 4 (in prepara-

tion) of [12].

� 1.4  What’s new

The transverse Mercator map projection formulas in Section 3 are new, as explained in Subsections 5.6 and 5.7.  The

new  formulas  provide  improved  efficiency  and  expanded  coverage  of  the  ellipsoid.   Using  them,  the  software  is

shorter and simpler to write, and, by implication, less likely to have bugs.

New  to  this  document  are  several  sections  on  MGRS  (Sections  11,  12,  and  13).   The  one-dimensional  tables  in

Subsections 11.2 and 11.3 offer simpler logic for grid-square lettering than the traditional two-dimensional tables in

[2],  but  produce  the  same  result.   Some  secondary  matters  concerning  MGRS,  namely  non-WGS-84  lettering

(Subsection  11.4)  and  latitude-band-letter  leniency  (Subsection  12.9),  have  remained  ambiguous  (not  standardized)

for  years.   This  is  corrected  here  for  the  first  time  in  a  DMA,  NIMA,  or  NGA  document.   “MGRS  Quick-start”

(Section 13) may be read after reading Sections 1, 2, and 3.  Because it is so close to MGRS, there is a brief section

(Section 14) on the U.S. National Grid (USNG).
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New  to  this  document  are  several  sections  on  MGRS  (Sections  11,  12,  and  13).   The  one-dimensional  tables  in

Subsections 11.2 and 11.3 offer simpler logic for grid-square lettering than the traditional two-dimensional tables in

[2],  but  produce  the  same  result.   Some  secondary  matters  concerning  MGRS,  namely  non-WGS-84  lettering

(Subsection  11.4)  and  latitude-band-letter  leniency  (Subsection  12.9),  have  remained  ambiguous  (not  standardized)

for  years.   This  is  corrected  here  for  the  first  time  in  a  DMA,  NIMA,  or  NGA  document.   “MGRS  Quick-start”

(Section 13) may be read after reading Sections 1, 2, and 3.  Because it is so close to MGRS, there is a brief section

(Section 14) on the U.S. National Grid (USNG).

This document advocates layering of software modules, so that, for example,  MGRS is a layer over UTM; UTM is a

layer over transverse Mercator with parameters; and the latter is a layer over basic transverse Mercator.  Then, within

each of  UTM, UPS and MGRS, some rules are described as “administrative rules” (e.g.  Subsection 7.4).   These are

usage oriented and not required by the theory.   The recommendation is  to not bundle these with the theory-required

formulas and logic, but make them a separate layer.

As a help to developers of geographic metadata formats and as a furtherance of general functionality, map projection

parameters for the transverse Mercator and polar stereographic projections are discussed in detail in Sections 5 and 9.

This yields software that is capable of both grid calculations and general cartography (map-sheet design) — a boon to

the desired consistency between these capabilities.

It is hoped that the plots and diagrams in Section 15 (all newly produced) will be useful to many.  They illustrate the

principles in this document.  

� 1.5  What’s old

The new formulas for transverse Mercator and UTM are consistent with the previous edition formulas where they

overlap.  MGRS-needed UTM calculations, for example, are unchanged.

 

� 1.6  Meters, radians, pi

All lengths and distances in this document are given in meters.  Readers interested in English units should be aware

that the international foot and the U.S. survey foot are slightly different.  For both, a foot is 12 inches.  For the U.S.

survey  foot,  one  meter  equals  39.37 (U.S.  survey)  inches  exactly;  for  the  international  foot,  one  (international)  inch

equals 2.54 centimeters exactly.

All  angles  occurring  in  the  formulas  are  assumed  to  be  in  radians.   One  radian  equals  
180

Π
 degrees  and  one  degree

equals 
Π

180
 radians.  When it is convenient to refer to an angle by its degree-equivalent, the notation “deg”  is used as a

multiplier.  Its value is deg =
Π

180
.  For example, Λ = 23 deg =

23 Π

180
.  An angle occurring in a numerical table will be in

degrees, if its column heading includes the notation “(deg)”.

If the programming language does not have a built-in function for Π, the developer may establish a value for it with a

statement like  pi  4  atan 1  taking the benefit of the arc-tangent function, which might be spelled “atan”.

This statement provides all the digits for Π within the chosen arithmetic precision type — single, double, or other type.

� 1.7  Inverse trigonometric functions

The  (circular)  trigonometric  functions  cosine  (cos),  sine  (sin)  and  tangent  (tan)  take  a  single  argument  in  radians.

Their inverses are defined:

arccos cos Θ = Θ, if 0 £ Θ £ Π

arcsin sin Θ = Θ, if
-Π

2
£ Θ £

Π

2

arctan tan Θ = Θ, if
-Π

2
< Θ <

Π

2

The following function is needed because some angles have values in all  four quadrants and because the determina-

tion of a first-quadrant angle is numerically more robust if its cosine and sine are given than if its tangent is given.  It

is called the two-argument version of arc-tangent and satisfies these identities:

(1)

arctan cos Θ, sin Θ = Θ, if - Π < Θ £ Π

arctan a x, a y = arctan x, y, if x and y are any real numbers and a > 0

arctan x, y = arctan
y

x
, if x > 0 and y is any real number

The order of the arguments for arctan as they appear in Eq. (1.1) and in [18] might be called “x before y”.  The other

convention might be called “numerator before denominator” and is the convention used in Fortran and C, where the

two-argument version of arc-tangent function is spelled “atan2”.  Its relationship to arctan in this document is:
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The order of the arguments for arctan as they appear in Eq. (1.1) and in [18] might be called “x before y”.  The other

convention might be called “numerator before denominator” and is the convention used in Fortran and C, where the

two-argument version of arc-tangent function is spelled “atan2”.  Its relationship to arctan in this document is:

arctan x, y = atan2 y, x

Some computer languages might not have the inverse hyperbolic tangent.  It is:

arctanh x =
1

2
Ln

1 + x

1 - x

where Ln is the natural logarithm function, that is, logarithms to the base 2.71828 ...

� 1.8  Sign, Floor, Round

Signum (sign) is the function that returns 1 if the argument is positive, 1 if the argument is negative, and 0 if the

argument is zero.

Floor  is  the  function  that  returns  the  greatest  integer  less  than  or  equal  to  the  given  number.   Some  examples  are:

Floor1.1 = 1,  Floor1 = 1,  Floor-1 = -1,  and Floor-1.1 = -2

Round is the function that returns the integer nearest to the given number, with half-integers rounded up.  It can also

be defined:

Round x = Floor x +
1

2
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2.  Reference Ellipsoid

Essential  for  the construction of the universal  grids are a  reference ellipsoid and the concepts of  longitude and lati-

tude, which are based upon it.  These and related matters are discussed in this section.

� 2.1  The reference ellipsoid

In  this  document,  the  Earth  is  represented by  a  reference ellipsoid,  defined as  a  surface  whose  points’  three-dimen-

sional Cartesian coordinates X , Y , Z satisfy the equation:

(2)
X 2

a2
+

Y 2

a2
+

Z2

b2
= 1

where  a and b are constants called the semi-major and semi-minor axes, respectively.  It is required that a > b.  The

quantities a and b determine the flattening, f , and the eccentricity-squared, e2, as follows:

f =
a - b

a
= 1 -

b

a

e2
=

a2 - b2

a2
= 1 -

b

a

2

The flattening and the eccentricity-squared are inter-convertible as follows:

e2
= f 2 - f 

f =
e2

1 + 1 - e2

Instead of the pair a, b as the defining parameters, the reference ellipsoid can be defined by a, f , a, f -1, a, e, or

a, e2 in which case b is given by either of these equations:

b = a 1 - f 

b = a 1 - e2

The reference ellipsoid is a mathematical idealization.  How it is attached to the physical Earth is outside the scope of

this document.  For a treatment of this topic in general, see the geodetic literature.  For its part in the establishment of

some modern terrestrial reference systems see [12] and [13].

� 2.2  Longitude Λ and geodetic latitude Φ

As stated above, a point in space lies on the reference ellipsoid if its coordinates X , Y , Z satisfy Eq. (2.2).  Equiva-

lently,  a  point  in  space lies  on the reference ellipsoid if  its  coordinates X , Y , Z  can be generated by the following

formulas:

(3)

X =
a

w
cos Φ cos Λ

Y =
a

w
cos Φ sin Λ

Z =
a 1 - e2

w
sin Φ

where 

(4)w = 1 - e2 sin2
Φ

and Λ and Φ are any two real numbers.  The quantity Λ, which is longitude in radians, can be restricted to any interval

of  length  2 Π  such  as  -Π < Λ £ Π.   The  quantity  Φ,  which  is  geodetic  latitude  in  radians,  should  be  restricted  to  the

interval -Π 2 £ Φ £ Π 2. 

In this section, the term for Φ  is  “geodetic latitude”,  to distinguish it  from other quantities that  are 0° at  the equator

and ±90° at the Poles (see Subsection 2.4).  After this section and in keeping with standard usage in geography and

cartography, geodetic latitude is shortened to “latitude”.
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In this section, the term for Φ  is  “geodetic latitude”,  to distinguish it  from other quantities that  are 0° at  the equator

and ±90° at the Poles (see Subsection 2.4).  After this section and in keeping with standard usage in geography and

cartography, geodetic latitude is shortened to “latitude”.

� 2.3  Ellipsoid numerical example

The International  ellipsoid (1924)  is  defined by a = 6 378 388 meters  and f -1 = 297.000000.   Using the  formulas  in

Subsection 2.1, the other parts of this ellipsoid are: 

Name                           name          International 1924

NGA two-letter code            twolet        IN

inverse flattening             1/f           297.000000000000000

flattening                     f             0.00336700336700336700

eccentricity-squared           e2                      0.00672267002233332200

eccentricity                   e             0.0819918899790297674

semi-major axis                a             6378388.00000000000

semi-minor axis                b             6356911.94612794613

A particular point on the International ellipsoid has longitude Λ = 23 deg =
23 Π

180
 and geodetic latitude Φ = 47 deg =

47 Π

180
.

Using Eqs. (2.3 and 2.4), the Cartesian coordinates X , Y , Z of the particular point are: 

   X = 4011461.001914537

Y = 1702764.171519670

Z = 4641850.497100156

   

� 2.4  Geocentric latitude Ψ and conformal latitude Χ

As stated above,  each point  on a  reference ellipsoid has a  longitude Λ  and geodetic latitude Φ.   These quantities are

sufficient to locate the point without ambiguity.  Other quantities needed in this document are the geocentric latitude

Ψ and the conformal latitude Χ, whose dependencies on Φ are given by:

(5)tan Ψ = 1 - e2 tan Φ

(6)arctanhsin Χ = arctanh sin Φ - e arctanh e sin Φ 

At  the  Equator,  Φ = Ψ = Χ = 0,  and  at  the  north  Pole,  Φ = Ψ = Χ = 90 deg.   For  the  southern  hemisphere,  changing

Φ ® -Φ  implies  Ψ ® -Ψ  and  Χ ® - Χ.   The  recommended  steps  for  converting  between  Φ  and  Χ  are  given  in

Subsections 2.8 and 2.9.

� 2.5  Illustration of Φ and Ψ

The  following  illustrates  the  concepts  of  reference  ellipsoid,  geodetic  latitude  Φ  and  geocentric  latitude  Ψ.   The

reference ellipsoid (with greatly exaggerated flattening) is shown by its intersection with the XZ plane, i.e. the plane of

the prime meridian (Λ = 0).  Point P is on the prime meridian.  The line PQ is perpendicular to the ellipsoid at P.  Then

Φ = ÐPQA is the geodetic latitude of P and Ψ = ÐPOA is the geocentric latitude of P.

Ψ Φ
X

Z

P

O

Q

A
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� 2.6  Given Φ, compute Ψ

This subsection gives the formulas to convert geodetic latitude Φ to geocentric latitude Ψ.

Eq. (2.5) succinctly states the relationship between Φ and Ψ, but a computational algorithm is given by:

Ψ =
Π

2
- arctan

cot Φ

1 - e2
, if Φ >

Π

4

Ψ = arctan  1 - e2 tan Φ , if
-Π

4
£ Φ £

Π

4

Ψ =
-Π

2
- arctan

cot Φ

1 - e2
, if Φ <

-Π

4

where arctan is the inverse tangent function and cot is the cotangent function.  The latter is defined cot Φ = tan  Π

2
- Φ

for  the  occasion  that  it  is  not  available  in  the  programming  language.   The  choice  of  endpoint  
Π

4
= 45 deg  and  its

negative for the above intervals of Φ is mostly arbitrary; other choices such as 50 deg and 1 radian would work just as

well.

Let the function defined by the above formulas be given the name “PhiToPsi” so that the above is equivalent to:

Ψ = PhiToPsi Φ

   

� 2.7  Given Ψ, compute Φ

This subsection gives the formulas to convert geocentric latitude Ψ to geodetic latitude Φ.

Φ =
Π

2
- arctan 1 - e2 cot Ψ , if Ψ >

Π

4

Φ = arctan
tan Ψ

1 - e2
, if

-Π

4
£ Ψ £

Π

4

Φ =
-Π

2
- arctan  1 - e2 cot Ψ , if Ψ <

-Π

4

Let the function defined by the above formulas be given the name “PsiToPhi” so that the above is equivalent to:

Φ = PsiToPhi Ψ

See comments in the previous subsection.

� 2.8  Given Φ, compute cos Χ, sin Χ

Eq. (2.6) succinctly states the relationship between Φ and Χ, but the need for Χ later in this document is only through

its cosine and sine.  Therefore, the conversion from Φ to Χ as needed in this document is the following:

cos Χ =
2 cos Φ

1 + sin Φ P + 1 - sin Φ P

sin Χ =
1 + sin Φ P - 1 - sin Φ P

1 + sin Φ P + 1 - sin Φ P

where

P = exp e arctanh e sin Φ  =
1 + e sin Φ

1 - e sin Φ

e2

See Subsection 1.7 for the definition of arctanh.  Of the two formulas given for P, the one using arctanh is preferred.

Let  the function defined by the above formulas be given the name “PhiToChi” so that  the above may be summarily

written:

cos Χ, sin Χ = PhiToChi Φ
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� 2.9  Given cos Χ, sin Χ, compute Φ

The procedure to compute geodetic latitude Φ given the cosine and sine of the conformal latitude Χ is the following:

Φ = arctan cos Φ, sin Φ

where cos Φ is computed from sin Φ and P by:

cos Φ =
1 + sin Φ P + 1 - sin Φ P

2
cos Χ

where sin Φ is the limit (within desired resolution) of s1, s2, s3, ... and P is the corresponding limit of P1, P2, P3, ...

and where:

s1 = sin Χ

sn+1 =
1 + sin Χ Pn

2 - 1 - sin Χ

1 + sin Χ Pn
2 + 1 - sin Χ

Pn = exp e arctanh e sn  =
1 + e sn

1 - e sn

e2

Of the two formulas given for Pn, the one using arctanh is preferred. Let the function defined by the above formulas

be given the name “ChiToPhi” so that the above conversion is written:

Φ = ChiToPhi cos Χ, sin Χ

� 2.10  Using Ψ as a substitute for Χ

The difference between Ψ and Χ is small and Φ « Ψ conversions are faster than Φ « Χ conversions.  Software develop-

ers could substitute Ψ for Χ in situations that require extreme performance and loose accuracy.  Numerical investiga-

tion of the loss of accuracy would be an obligation of the developer, but here is some initial guidance:

For  an  ellipsoid  no  flatter  than  the  ellipsoids  in  Section  4,  the  worst  case  occurs  for  the  Clark  1880  ellipsoid  at

Φ = ±60.1184 deg where Χ - Ψ  reaches a  maximum of  0.5207 arc-seconds.   An error  in  Χ  of  some amount  under

one second (e.g. because the formula for Ψ is used instead) propagates to an error in Φ of roughly the same amount.
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3.  Basic Transverse Mercator

One of  the universal  grids,  namely Universal  Transverse Mercator  (UTM),  is  based on the transverse Mercator  map

projection.   This  section  gives  the  formulas  for  transverse  Mercator  in  its  basic  form.   Later  in  Section  5,  various

parameters such as central meridian and central scale factor will be introduced.  They will enable transverse Mercator

to be offered in its commonly-used general form.

The  theory  of  map projections  and  the  theory  of  conformal  mapping  between surfaces  are  outside  the  scope  of  this

document.   However,  one idea from these theories is  presented.   The formulas for  transverse Mercator  will  be new,

and  the  theoretical  definition  of  transverse  Mercator  in  Subsection  3.1  is  appropriate  as  a  bridge  between  old,  e.g.

[16], and new.

In this section, any constant dependent on a reference ellipsoid will have the value pertaining to the WGS 84 ellipsoid.

Transverse Mercator for other reference ellipsoids is given in Section 4.

� 3.1  Definition of transverse Mercator

Transverse Mercator in its basic form is defined by the following requirements:

è Requirement 1:  The prime meridian, i.e. the meridian at longitude Λ = 0, is portrayed on the x, y plane of the map 

projection as a segment of the vertical line x = 0.

è Requirement 2:  The point of intersection of the prime meridian with the Equator corresponds to the point 

x, y = 0, 0 on the map projection plane.

è Requirement 3:  If two points lie on the prime meridian, the distance between them on the map projection plane 

will be the same as the length of meridional arc joining them on the reference ellipsoid.  In other words, “distance 

is preserved” (on the prime meridian).

è Requirement 4:  The map projection is conformal

It  is  notable  that  the  only  requirement  dealing  with  points  not  on  the  prime  meridian  is  Requirement  4.   After  the

prime meridian’s points are properly placed, Requirement 4 is enough to determine the map projection’s placement of

all other points.

For readers who are familiar with transverse Mercator or who have looked ahead to Section 5, it can be stated that the

parameter  choices  implied  by  the  above  definition  are  (i)  a  central  meridian  of  longitude  0  deg,  (ii)  a  central  scale

factor  of  1.0000,  (iii)  an  “Origin”  point  given  as  longitude  0 deg  and  latitude  0 deg,  and  (iv)  a  False  Easting  and  a

False Northing of 0 mE and 0 mN, respectively, assigned to that origin.  This is the basic form of transverse Mercator.

The  formulas  for  transverse  Mercator  to  follow  are  new  (in  a  sense  to  be  explained),  but  they  adhere  to  the  above

definition, which is not new (in effect).  The above definition is implicit in the map projection literature, and both old

and new formulas are based upon it.  A discussion of the relationship of this document to other authorities on trans-

verse Mercator must await the conclusion of Section 5.

� 3.2  Given Λ, Φ, compute x, y

This subsection gives the forward mapping equations for the basic form of the transverse Mercator projection.  Given

the longitude Λ and latitude Φ of a point on the reference ellipsoid, the functions f1  and f2, specified below, produce

the easting x = f1Λ, Φ and northing y = f2Λ, Φ of the corresponding point on the map projection plane.  They satisfy

the requirements of Subsection 3.1.

(7)

x = f1Λ, Φ
= R4 u + a2 sinh2 u cos2 v + a4 sinh4 u cos4 v + ... + a12 sinh12 u cos12 v 

y = f2Λ, Φ
= R4 v + a2 cosh2 u sin2 v + a4 cosh4 u sin4 v + ... + a12 cosh12 u sin12 v 

where cosh and sinh are the hyperbolic cosine and hyperbolic sine, respectively, and R4  and a2, a4, a6, a8, a10  and a12

are constants, and where u and v are determined by:

(8)
u = arctanh  cos Χ sin Λ 
v = arctan  cos Χ cos Λ, sin Χ 
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and cos Χ and sin Χ are computed according to Subsection 2.8, i.e. the function PhiToChi is applied:

cos Χ, sin Χ = PhiToChi Φ

For the WGS 84 ellipsoid (a = 6 378 137, f -1 = 298.257223563), the numerical values of the constants are:

(9)

R4 = 6 367 449.1458234153093 meters

a2 = 8.3773182062446983032 E 04 unitless
a4 = 7.608527773572489156 E 07 unitless
a6 = 1.19764550324249210 E 09 unitless
a8 = 2.4291706803973131 E 12 unitless
a10 = 5.711818369154105 E 15 unitless
a12 = 1.47999802705262 E 17 unitless

The quantity R4  has a name — the meridional isoperimetric radius.  It  is  the radius of a semicircle having the same

arclength as a meridian.  Its notation, R4, was chosen after seeing that notations R1, R2, R3  were adopted by [10] and

[12] for the tri-axial arithmetic-mean radius, the authalic radius, and the isovolumetric radius, respectively.

� 3.3  Notes to the developer

The  previous  subsection  is  complete  for  the  mathematics  of  the  forward  mapping  equations  of  the  basic  form  of

transverse Mercator.  This subsection offers additional information that might be helpful.

A series of numbers should be added from small (absolute values) to large, so as not to risk losing the full contribution

of the small numbers to the sum.  Therefore, the series for x in Eq. (3.7) should begin with the last term and add each

preceding term in turn.  Likewise for the series for y.

Simplicity  of  computer  code  and  high  performance  of  computer  code  are  competing  requirements  for  algorithm

design; it is usually not possible to achieve both.  This document leans toward the former, but not exclusively, and the

following  improvement  for  performance  (speed)  might  be  of  interest  to  some  developers.   Toward  the  numerical

outcome required by Eq. (3.7), after cos2 v and sin2 v have been computed, the remaining multiple-angle sines and

cosines can be computed by:

(10)

cos4 v = 2 cos22 v - 1

sin4 v = 2 cos2 v sin2 v
cos6 v = cos4 v cos2 v - sin4 v sin2 v
sin6 v = cos4 v sin2 v + cos2 v sin4 v

and the pattern continues with:

(11)

cos8 v = 2 cos24 v - 1

sin8 v = 2 cos4 v sin4 v
cos10 v = cos8 v cos2 v - sin8 v sin2 v
sin10 v = cos8 v sin2 v + cos2 v sin8 v
cos12 v = 2 cos26 v - 1

sin12 v = 2 cos6 v sin6 v

For the hyperbolic functions, the formulas are:

(12)

cosh4 u � 2 cosh22 u - 1

sinh4 u � 2 cosh2 u sinh2 u
cosh6 u � cosh2 u cosh4 u + sinh2 u sinh4 u
sinh6 u � cosh4 u sinh2 u + cosh2 u sinh4 u

NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

16



and the pattern continues with:

(13)

cosh8 u � 2 cosh24 u - 1

sinh8 u � 2 cosh4 u sinh4 u
cosh10 u � cosh2 u cosh8 u + sinh2 u sinh8 u
sinh10 u � cosh8 u sinh2 u + cosh2 u sinh8 u
cosh12 u � 2 cosh26 u - 1

sinh12 u � 2 cosh6 u sinh6 u

It is in the nature of these mathematical functions that Eqs. (3.10 and 3.12) look so much alike as do Eqs. (3.11 and

3.13).  A careful look at the formulas for cos6 v, and cosh6 u will reveal that they are not totally alike.  The above is

correct, despite looking like there is a mistake in sign.

Eq. (3.7) as written above implies 24 calls to trigonometric functions (circular or hyperbolic).   With the use of Eqs.

(3.10 through 3.13), this is reduced to merely four calls — cos2 v, sin2 v, cosh2 u and sinh2 u.  The time for the

extra additions and multiplications is minuscule compared to the performance savings of fewer calls to trigonometric

functions.  The extra effort to use Eqs. (3.10 through 3.13) will not suit the needs of all software developers.

It  may  be  argued  that  for  practical  applications  of  transverse  Mercator  and  UTM,  Eq.  (3.9)  contains  an  excessive

number of  digits.   However,  developers  are  encouraged to  cut  and paste  the  numbers  as  given into  their  code.   The

computer memory locations must be filled somehow; the extra digits cause no performance degradation; and they are

not entirely inconsequential in software-testing.  

The transverse Mercator projection is symmetric about the Equator and about the prime meridian.  These symmetries

are contained in Eqs. (3.7, 3.8, and 3.9),  which therefore apply to all  four quadrants, not merely to Λ > 0 with Φ > 0.

There is no need for additional code to convert points in other quadrants.  Additionally and likewise, Eqs. (3.7,  3.8,

and 3.9) get correct the (lesser known) symmetry about the meridians Λ = ±90 deg in the polar regions.

Lastly, some developers might be interested in a trade-off between accuracy and speed.  Eqs. (3.10 to 3.13) were an

attempt to meet the developer’s need for speed.  They do so without loss of accuracy.  If that effort is insufficient, it is

admitted that fewer terms of Eq. (3.7) would be possible under a more lax accuracy requirement (Subsection 3.9) or a

more restricted reference-ellipsoid coverage requirement (Subsection 3.7), or both.

� 3.4  Forward mapping: a numerical example

Let Λ, Φ = -10 deg, 3 deg  define a  point  on the WGS 84 ellipsoid.   Then cos Χ = 0.998647785036631316 and

sin Χ = 0.0519865505821477812  by  Subsection  2.8.   Then  u = -0.175183729646051084  and

v = 0.0528108539283539197 by Eq. (3.8).   Finally,  x = -1 117 373.87527102019 and y = 336 868.939627688401 by

Eq. (3.7) .

� 3.5  Given x, y, compute Λ, Φ

This subsection gives the inverse mapping equations for the basic form of the transverse Mercator projection.  Given

the easting x and northing y of a point on the map projection plane, the functions g1  and g2, specified below, produce

the longitude Λ and latitude Φ of the corresponding point on the ellipsoid.

(14)Λ = g1 x, y = arctan  cos v, sinh u 

where u and v are computed below;

Φ = g2 x, y = ChiToPhi cos Χ, sin Χ

where the function ChiToPhi is defined in Subsection 2.9 and cos Χ is computed from u, and v as follows:

cos Χ =
sinh u

cosh u sin Λ

unless sin Λ is close to zero, that is, unless:

Λ < 0.01 or Λ ± Π < 0.01 or Λ ± 2 Π < 0.01

in which case the calculation should be:

NGA.SIG.0012_2.0.0_UTMUPS 2014-03-25

17



cos Χ =
sinh2 u + cos2 v

cosh u

and sin Χ is computed

sin Χ =
sin v

cosh u

where u and v are computed from x and y as follows:

u =
x

R4

+ b2 sinh
2 x

R4

cos
2 y

R4

+ b4 sinh
4 x

R4

cos
4 y

R4

+ ... + b12 sinh
12 x

R4

cos
12 y

R4

v =
y

R4

+ b2 cosh
2 x

R4

sin
2 y

R4

+ b4 cosh
4 x

R4

sin
4 y

R4

+ ... + b12 cosh
12 x

R4

sin
12 y

R4

where R4 is defined in Subsection 3.2 and b2, b4, ... b12 are unitless constants.   In the case of the WGS 84 ellipsoid,

the values are:

b2  =  -8.3773216405794867707E-04

 b4 = -5.905870152220365181E-08

 b6 = -1.67348266534382493E-10

 b8 = -2.1647981104903862E-13

 b10 = -3.787930968839601E-16

 b12 = -7.23676928796690E-19  

Longitude at the Poles is ambiguous, i.e. not well defined.  For the forward mapping equations (Section 3.2) this was

not a problem.  The formulas there will correctly convert Φ = ±90 deg no matter what numerical value is used for Λ.

In this subsection, the ambiguity is a problem.  The attempted computation of Λ in Eq. (3.14) will fail when the math-

library routine for arctangent encounters arctan0, 0.  This will happen at a Pole, where u = 0 and v = ± Π 2, derived

from x = 0 and y = ± R4Π 2.  To get around this, let the software define a constant, Λpole = 0 (suggested), and execute

Λ = Λpole if u = 0 and v = ± Π 2, and execute Eq. (3.14) otherwise.

See the notes to the developer in Subsection 3.3.  

� 3.6  Inverse mapping: a numerical example

Let the reference ellipsoid be WGS 84 and let x = 400 000 and y = 7 000 000 be given.  Then, in order of calculation,

u = 0.0628815005045996857,  v = 1.09865807573984195,  Λ = 0.137482740770994122  which  in  degrees  is

7.87718080206913254, cos Χ = 0.458217667193810883, and sin Χ = 0.888840013428435821.  Then, by the methods

of Subsection 2.9, Φ = 1.09753532362197469 which in degrees is 62.8841419100641123. 

� 3.7  Coverage of the ellipsoid

For reasons beyond the scope of this document, the forward mapping equations in Subsection 3.2 are not valid for the

entire  ellipsoid  (i.e.  the  WGS  84  ellipsoid,  in  this  section).   An  area  surrounding  each  of  the  two  points

Λ, Φ = ±90 deg, 0 deg  must  be  omitted.       Without  trying  to  make  the  omitted  area  as  small  as  possible,  it  is

possible and permitted to specify the region of validity as those points Λ, Φ which satisfy one or more of the inequali-

ties in the following list:  

Λ £ 70 deg

Λ - Π £ 70 deg

Λ + Π £ 70 deg

Π

2
- Φ £ 70 deg

Φ +
Π

2
£ 70 deg

(Recall from Subsection 1.6 that deg = Π 180 is a multiplier so that 70 deg = 7 Π 18).  In words, by the above rule, any

point to be placed on a transverse Mercator map must be within 70° of longitude to the prime or anti-prime meridian

or within 70° of latitude to the North or South Pole.
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(Recall from Subsection 1.6 that deg = Π 180 is a multiplier so that 70 deg = 7 Π 18).  In words, by the above rule, any

point to be placed on a transverse Mercator map must be within 70° of longitude to the prime or anti-prime meridian

or within 70° of latitude to the North or South Pole.

There is a corresponding region of validity for the inverse mapping equations.  A simple, non-maximal, but adequate

choice for it is the set of all points x, y such that: 

x £ 10 000 000 meters and y £ 20 000 000 meters

The  above  regions  of  validity  permit  all  calculations  of  the  form x, y ® Λ, Φ ® x¢, y¢,  i.e.  the  forward  mapping

equations can always be used to check an inverse-mapping-equation calculation.

  

� 3.8  Index ∆

As a measure of how well a point given by Λ, Φ falls within the ellipsoid coverage (Subsection 3.7) and as an index

to computational-error bounds  in Subsection 3.9,  the following function of  Λ, Φ is defined:

∆ = Minimum Λ , Λ - Π , Λ + Π ,
Π

2
- Φ, Φ +

Π

2

The  quantity  ∆  is  the  minimum  of  the  5  quantities  listed  above.   The  ellipsoid  coverage  can  be  restated  simply  as

∆ £ 70 deg.  In words, ∆ is the smaller of the latitude-difference to the nearest Pole and the longitude-difference to the

nearest “special” meridian (i.e. central or anti-central meridian).

� 3.9  Computational accuracy

The theoretical definition of transverse Mercator in Subsection 3.1 is the standard by which approximate formulations

such  as  in  Subsections  3.2  and  3.5  are  judged  for  computational  accuracy.   The  forward  mapping  equations

(Subsection 3.2 using all terms) have the following computational-error bounds, depending on the index ∆:

index ∆  bound

(deg) (meters)

  30    10-9

  40      10-8

  50 0.5´10-6

  60    10-5

  70    10-2

For  example,  if  a  point  P  has  index  ∆ £ 60 deg,  then  x - x¢2 + y - y¢2 < 10-5meters  where  x, y  are  the  com-

puted coordinates and x¢, y¢ are the true coordinates of the conversion of P.  

The inverse mapping equations have corresponding accuracies.  In other words, the inverse mapping followed by the

true forward mapping would produce round-trip discrepancies in meters within the bounds given above.

Software  developers  competent  in  iterative  numerical  methods  will  know  how  to  build  an  accurate  inverse  of  this

document’s  approximate  forward  mapping  equations.   This  is  discouraged,  as  it  will  not  produce  a  more  accurate

inverse mapping than the one given here.
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4.  Transverse Mercator for other Ellipsoids

Section  3  was  limited  to  one  choice  for  the  reference  ellipsoid,  namely  the  WGS  84  ellipsoid.   In  particular,  the

constants  R4,  e,  a2,  ...,  a12,  b2,  ...  b12  all  depend on the  choice  of  the  reference ellipsoid.   This  section provides  the

values  of  these  constants  for  each  ellipsoid  in  Appendix  A  of  [12].   A  method  of  calculating  these  is  found  in  [9].

This provision extends the formulations of transverse Mercator in Subsections 3.2 and 3.5 to these other ellipsoids.

In this  section,  subscripted notations are  replaced by non-subscripted notations.   For  example,  a2  is  replaced by A2

and b2 is replaced by B2.

The ellipsoids are listed in order of increasing flattening (decreasing inverse flattening).

� 4.1  Everest 1956 (India) ellipsoid

Name                             name    Everest 1956 (India)

NGA two-letter code              twolet  EC

Semi-major axis                  a       6377301.2430000000000

Semi-minor axis                  b       6356100.2283681013106

Inverse flattening               1/f     300.80170000000000000

(First) eccentricity             e       0.081472980982652689208

Eccentricity squared             e
2

   0.0066378466301996867553

Meridional isoperimetric radius  R4      6366705.1481254190443

A2  =   8.3064943111192510534E-04

A4  =   7.480375027595025021E-07

A6  =   1.16750772278215999E-09

A8  =   2.3479972304395461E-12

A10 =   5.474212231879573E-15

A12 =   1.40642257446745E-17

B2  =  -8.3064976590443772201E-04

B4  =  -5.805953517555717859E-08

B6  =  -1.63133251663416522E-10

B8  =  -2.0923797199593389E-13

B10 =  -3.630200927775259E-16

B12 =  -6.87666654919219E-19

� 4.2  Other “Everest” ellipsoids

There are other ellipsoids listed in Appendix A of [12] having “Everest” in their names.  They differ from the Everest

1956 (India) ellipsoid in size but not in shape.  Therefore they have the same values for f , f -1, e, e2, a2,  a4, ..., b12.

The  value  of  R4  is  obtained  from  the  value  of  the  semi-major  axis,  a,  by  multiplying  by  the  constant

0.99833846724957337010 or by referring to the following table.  (This multiplier pertains only to ellipsoids having this

shape, i.e. an inverse flattening of  300.8017).

    Name                                   code              a                 b                R4        

    Everest (India 1830)                EA   6377276.345000   6356075.413140   6366680.291494

    Everest (E. Malaysia, Brunei)       EB   6377298.556000   6356097.550301   6366702.465590

    Everest 1956 (India)                EC   6377301.243000   6356100.228368   6366705.148125

    Everest 1969 (West Malaysia)        ED   6377295.664000   6356094.667915   6366699.578395

    Everest 1948(W.Malaysia,Singapore)  EE   6377304.063000   6356103.038993   6366707.963440

    Everest (Pakistan)                  EF   6377309.613000   6356108.570542   6366713.504218

� 4.3  Airy 1830 ellipsoid

Name                             name    Airy 1830

NGA two-letter code              twolet  AA

Semi-major axis                  a       6377563.3960000000000

Semi-minor axis                  b       6356256.9092372851202

Inverse flattening               1/f     299.32496460000000000

(First) eccentricity             e       0.081673373874141892673

Eccentricity squared             e
2

   0.0066705399999853634746

Meridional isoperimetric radius  R4      6366914.6089252214441

A2  =   8.3474517669594013740E-04

A4  =   7.554352936725572895E-07

A6  =   1.18487391005135489E-09

A8  =   2.3946872955703565E-12

A10 =   5.610633978440270E-15

A12 =   1.44858956458553E-17

B2  =  -8.3474551646761162264E-04

B4  =  -5.863630361809676570E-08

B6  =  -1.65562038746920803E-10

B8  =  -2.1340335537652749E-13

B10 =  -3.720760760132477E-16

B12 =  -7.08304328877781E-19
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Name                             name    Airy 1830

NGA two-letter code              twolet  AA

Semi-major axis                  a       6377563.3960000000000

Semi-minor axis                  b       6356256.9092372851202

Inverse flattening               1/f     299.32496460000000000

(First) eccentricity             e       0.081673373874141892673

Eccentricity squared             e
2

   0.0066705399999853634746

Meridional isoperimetric radius  R4      6366914.6089252214441

A2  =   8.3474517669594013740E-04

A4  =   7.554352936725572895E-07

A6  =   1.18487391005135489E-09

A8  =   2.3946872955703565E-12

A10 =   5.610633978440270E-15

A12 =   1.44858956458553E-17

B2  =  -8.3474551646761162264E-04

B4  =  -5.863630361809676570E-08

B6  =  -1.65562038746920803E-10

B8  =  -2.1340335537652749E-13

B10 =  -3.720760760132477E-16

B12 =  -7.08304328877781E-19

� 4.4  Modified Airy ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the Airy 1830 ellipsoid above.

Name                             name    Modified Airy

NGA two-letter code              twolet  AM

Semi-major axis                  a       6377340.1890000000000

Semi-minor axis                  b       6356034.4479385342568

Inverse flattening               1/f     299.32496460000000000

(First) eccentricity             e       0.081673373874141892673

Eccentricity squared             e
2

   0.0066705399999853634746

Meridional isoperimetric radius  R4      6366691.7746198806757

The coefficients, a2,  a4, ..., b12 are the same as for the Airy 1830 ellipsoid.

� 4.5  Bessel 1841 (Ethiopia, Asia) ellipsoid

Name                             name    Bessel 1841 (Ethiopia, Asia)

NGA two-letter code              twolet  BR

Semi-major axis                  a       6377397.1550000000000

Semi-minor axis                  b       6356078.9628181880963

Inverse flattening               1/f     299.15281280000000000

(First) eccentricity             e       0.081696831222527503120

Eccentricity squared             e
2

   0.0066743722318021446801

Meridional isoperimetric radius  R4      6366742.5202340428423

A2  =   8.3522527226849818552E-04

A4  =   7.563048340614894422E-07

A6  =   1.18692075307408346E-09

A8  =   2.4002054791393298E-12

A10 =   5.626801597980756E-15

A12 =   1.45360057224474E-17

B2  =  -8.3522561262703079182E-04

B4  =  -5.870409978661008580E-08

B6  =  -1.65848307463131468E-10

B8  =  -2.1389565927064571E-13

B10 =  -3.731493368666479E-16

B12 =  -7.10756898071999E-19

� 4.6  Bessel 1841 (Namibia) ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as Bessel 1841 (Ethiopia, Asia), above.

Name                             name    Bessel 1841 (Namibia)

NGA two-letter code              twolet  BN

Semi-major axis                  a       6377483.8650000000000

Semi-minor axis                  b       6356165.3829663254699

Inverse flattening               1/f     299.15281280000000000

(First) eccentricity             e       0.081696831222527503120

Eccentricity squared             e
2

   0.0066743722318021446801

Meridional isoperimetric radius  R4      6366829.0853687697376

The coefficients, a2,  a4, ..., b12 are the same as for Bessel 1841 (Ethiopia, Asia).
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� 4.7  Krassovsky 1940 ellipsoid

Name                             name    Krassovsky 1940

NGA two-letter code              twolet  KA

Semi-major axis                  a       6378245.0000000000000

Semi-minor axis                  b       6356863.0187730472679

Inverse flattening               1/f     298.30000000000000000

(First) eccentricity             e       0.081813334016931147358

Eccentricity squared             e
2

   0.0066934216229659432280

Meridional isoperimetric radius  R4      6367558.4968749794253

A2  =   8.3761175713442343106E-04

A4  =   7.606346200814720197E-07

A6  =   1.19713032035541037E-09

A8  =   2.4277772986483520E-12

A10 =   5.707722772225013E-15

A12 =   1.47872454335773E-17

B2  =  -8.3761210042019176501E-04

B4  =  -5.904169154078546237E-08

B6  =  -1.67276212891429215E-10

B8  =  -2.1635549847939549E-13

B10 =  -3.785212121016612E-16

B12 =  -7.23053625983667E-19

� 4.8  Helmert 1906 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the Krassovsky 1940 ellipsoid above.

Name                             name    Helmert 1906

NGA two-letter code              twolet  HE

Semi-major axis                  a       6378200.0000000000000

Semi-minor axis                  b       6356818.1696278913845

Inverse flattening               1/f     298.30000000000000000

(First) eccentricity             e       0.081813334016931147358

Eccentricity squared             e
2

   0.0066934216229659432280

Meridional isoperimetric radius  R4      6367513.5722707412102

The coefficients, a2,  a4, ..., b12 are the same as for Krassovsky 1940.

� 4.9  Modified Fischer 1960 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the Krassovsky 1940 ellipsoid above.

Name                             name    Modified Fischer 1960

NGA two-letter code              twolet  FA

Semi-major axis                  a       6378155.0000000000000

Semi-minor axis                  b       6356773.3204827355012

Inverse flattening               1/f     298.30000000000000000

(First) eccentricity             e       0.081813334016931147358

Eccentricity squared             e
2

   0.0066934216229659432280

Meridional isoperimetric radius  R4      6367468.6476665029951

The coefficients, a2,  a4, ..., b12 are the same as for Krassovsky 1940.

� 4.10  WGS 72 ellipsoid

Name                             name    WGS 72

NGA two-letter code              twolet  WD

Semi-major axis                  a       6378135.0000000000000

Semi-minor axis                  b       6356750.5000000000000

Inverse flattening               1/f     298.25972082583179406

(First) eccentricity             e       0.081818848890064648207

Eccentricity squared             e
2

   0.0066943240336952331159

Meridional isoperimetric radius  R4      6367447.2386241894462

A2  =   8.3772481044362217923E-04

A4  =   7.608400388863560936E-07

A6  =   1.19761541904924067E-09

A8  =   2.4290893081322466E-12

A10 =   5.711579173743133E-15

A12 =   1.47992364667635E-17

B2  =  -8.3772515386847544554E-04

B4  =  -5.905770828762463028E-08

B6  =  -1.67344058948464124E-10

B8  =  -2.1647255130188214E-13

B10 =  -3.787772179729998E-16

B12 =  -7.23640523525528E-19
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Name                             name    WGS 72

NGA two-letter code              twolet  WD

Semi-major axis                  a       6378135.0000000000000

Semi-minor axis                  b       6356750.5000000000000

Inverse flattening               1/f     298.25972082583179406

(First) eccentricity             e       0.081818848890064648207

Eccentricity squared             e
2

   0.0066943240336952331159

Meridional isoperimetric radius  R4      6367447.2386241894462

A2  =   8.3772481044362217923E-04

A4  =   7.608400388863560936E-07

A6  =   1.19761541904924067E-09

A8  =   2.4290893081322466E-12

A10 =   5.711579173743133E-15

A12 =   1.47992364667635E-17

B2  =  -8.3772515386847544554E-04

B4  =  -5.905770828762463028E-08

B6  =  -1.67344058948464124E-10

B8  =  -2.1647255130188214E-13

B10 =  -3.787772179729998E-16

B12 =  -7.23640523525528E-19

� 4.11  WGS 84 ellipsoid

The subsection repeats some information for the WGS 84 ellipsoid in the format of this section.

Name                             name    WGS 84

NGA two-letter code              twolet  WE

Semi-major axis                  a       6378137.0000000000000

Semi-minor axis                  b       6356752.3142451794976

Inverse flattening               1/f     298.25722356300000000

(First) eccentricity             e       0.081819190842621494335

Eccentricity squared             e
2

   0.0066943799901413169961

Meridional isoperimetric radius  R4      6367449.1458234153093

A2  =   8.3773182062446983032E-04

A4  =   7.608527773572489156E-07

A6  =   1.19764550324249210E-09

A8  =   2.4291706803973131E-12

A10 =   5.711818369154105E-15

A12 =   1.47999802705262E-17

B2  =  -8.3773216405794867707E-04

B4  =  -5.905870152220365181E-08

B6  =  -1.67348266534382493E-10

B8  =  -2.1647981104903862E-13

B10 =  -3.787930968839601E-16

B12 =  -7.23676928796690E-19

� 4.12  GRS 80 ellipsoid

Name                             name    GRS 80

NGA two-letter code              twolet  RF

Semi-major axis                  a       6378137.0000000000000

Semi-minor axis                  b       6356752.3141403558479

Inverse flattening               1/f     298.25722210100000000

(First) eccentricity             e       0.081819191042815790146

Eccentricity squared             e
2

   0.0066943800229007876254

Meridional isoperimetric radius  R4      6367449.1457710475269

A2  =   8.3773182472855134012E-04

A4  =   7.608527848149655006E-07

A6  =   1.19764552085530681E-09

A8  =   2.4291707280369697E-12

A10 =   5.711818509192422E-15

A12 =   1.47999807059922E-17

B2  =  -8.3773216816203523672E-04

B4  =  -5.905870210369121594E-08

B6  =  -1.67348268997717031E-10

B8  =  -2.1647981529928124E-13

B10 =  -3.787931061803592E-16

B12 =  -7.23676950110361E-19

� 4.13  South American 1969 ellipsoid

Name                             name    South American 1969

NGA two-letter code              twolet  SA

Semi-major axis                  a       6378160.0000000000000

Semi-minor axis                  b       6356774.7191953059514

Inverse flattening               1/f     298.25000000000000000

(First) eccentricity             e       0.081820179996059878869

Eccentricity squared             e
2

   0.0066945418545876371598

Meridional isoperimetric radius  R4      6367471.8485322822248

A2  =   8.3775209887947194075E-04

A4  =   7.608896263599627157E-07

A6  =   1.19773253021831769E-09

A8  =   2.4294060763606098E-12

A10 =   5.712510331613028E-15

A12 =   1.48021320370432E-17

B2  =  -8.3775244233790270051E-04

B4  =  -5.906157468586898015E-08

B6  =  -1.67360438158764851E-10

B8  =  -2.1650081225048788E-13

B10 =  -3.788390325953455E-16

B12 =  -7.23782246429908E-19
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Name                             name    South American 1969

NGA two-letter code              twolet  SA

Semi-major axis                  a       6378160.0000000000000

Semi-minor axis                  b       6356774.7191953059514

Inverse flattening               1/f     298.25000000000000000

(First) eccentricity             e       0.081820179996059878869

Eccentricity squared             e
2

   0.0066945418545876371598

Meridional isoperimetric radius  R4      6367471.8485322822248

A2  =   8.3775209887947194075E-04

A4  =   7.608896263599627157E-07

A6  =   1.19773253021831769E-09

A8  =   2.4294060763606098E-12

A10 =   5.712510331613028E-15

A12 =   1.48021320370432E-17

B2  =  -8.3775244233790270051E-04

B4  =  -5.906157468586898015E-08

B6  =  -1.67360438158764851E-10

B8  =  -2.1650081225048788E-13

B10 =  -3.788390325953455E-16

B12 =  -7.23782246429908E-19

� 4.14  Australian National 1966 ellipsoid

The Australian National 1966 ellipsoid is identical to the South American 1969 ellipsoid.  Its NGA two-letter code is

“AN”.  The numerical values of all the parameters are the same as those for South American 1969.

� 4.15  Indonesian 1974 ellipsoid

Name                             name    Indonesian 1974

NGA two-letter code              twolet  ID

Semi-major axis                  a       6378160.0000000000000

Semi-minor axis                  b       6356774.5040855398378

Inverse flattening               1/f     298.24700000000000000

(First) eccentricity             e       0.081820590809460040025

Eccentricity squared             e
2

   0.0066946090804090967678

Meridional isoperimetric radius  R4      6367471.7410677818465

A2  =   8.3776052087969078729E-04

A4  =   7.609049308144604484E-07

A6  =   1.19776867565343872E-09

A8  =   2.4295038464530901E-12

A10 =   5.712797738386076E-15

A12 =   1.48030257891140E-17

B2  =  -8.3776086434848497443E-04

B4  =  -5.906276799395007586E-08

B6  =  -1.67365493472742884E-10

B8  =  -2.1650953495573773E-13

B10 =  -3.788581120060625E-16

B12 =  -7.23825990889693E-19

� 4.16  International 1924 ellipsoid

Name                             name    International 1924

NGA two-letter code              twolet  IN

Semi-major axis                  a       6378388.0000000000000

Semi-minor axis                  b       6356911.9461279461279

Inverse flattening               1/f     297.00000000000000000

(First) eccentricity             e       0.081991889979029767433

Eccentricity squared             e
2

   0.0067226700223333219966

Meridional isoperimetric radius  R4      6367654.5000575837475

A2  =   8.4127599100356448089E-04

A4  =   7.673066923431950296E-07

A6  =   1.21291995794281190E-09

A8  =   2.4705731165688123E-12

A10 =   5.833780550286833E-15

A12 =   1.51800420867708E-17

B2  =  -8.4127633881644851945E-04

B4  =  -5.956193574768780571E-08

B6  =  -1.69484573979154433E-10

B8  =  -2.2017363465021880E-13

B10 =  -3.868896221495780E-16

B12 =  -7.42279219864412E-19
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� 4.17  Hough 1960 ellipsoid

This ellipsoid has the same flattening (and inverse flattening) as the International 1924 ellipsoid.

Name                             name    Hough 1960

NGA two-letter code              twolet  HO

Semi-major axis                  a       6378270.0000000000000

Semi-minor axis                  b       6356794.3434343434343

Inverse flattening               1/f     297.00000000000000000

(First) eccentricity             e       0.081991889979029767433

Eccentricity squared             e
2

   0.0067226700223333219966

Meridional isoperimetric radius  R4      6367536.6986270331452

The coefficients, a2,  a4, ..., b12 are the same as for International 1924.

� 4.18  War Office 1924 ellipsoid

Name                             name    War Office 1924

NGA two-letter code              twolet  WO

Semi-major axis                  a       6378300.5800000000000

Semi-minor axis                  b       6356752.2672297297297

Inverse flattening               1/f     296.00000000000000000

(First) eccentricity             e       0.082130039061778500016

Eccentricity squared             e
2

   0.0067453433162892622352

Meridional isoperimetric radius  R4      6367530.9812114439907

A2  =   8.4411652150600103279E-04

A4  =   7.724989750172583427E-07

A6  =   1.22525529789972041E-09

A8  =   2.5041361775549209E-12

A10 =   5.933026083631383E-15

A12 =   1.54904908794521E-17

B2  =  -8.4411687285559594196E-04

B4  =  -5.996681687064322548E-08

B6  =  -1.71209836918814857E-10

B8  =  -2.2316811233502163E-13

B10 =  -3.934782433323038E-16

B12 =  -7.57474665717687E-19

� 4.19  Clarke 1866 ellipsoid

Name                             name    Clarke 1866

NGA two-letter code              twolet  CC

Semi-major axis                  a       6378206.4000000000000

Semi-minor axis                  b       6356583.8000000000000

Inverse flattening               1/f     294.97869821390582076

(First) eccentricity             e       0.082271854223003258770

Eccentricity squared             e
2

   0.0067686579972910991438

Meridional isoperimetric radius  R4      6367399.6891697827298

A2  =   8.4703742793654652315E-04

A4  =   7.778564517658115212E-07

A6  =   1.23802665917879731E-09

A8  =   2.5390045684252928E-12

A10 =   6.036484469753319E-15

A12 =   1.58152259295850E-17

B2  =  -8.4703778294785813001E-04

B4  =  -6.038459874600183555E-08

B6  =  -1.72996106059227725E-10

B8  =  -2.2627911073545072E-13

B10 =  -4.003466873888566E-16

B12 =  -7.73369749524777E-19
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� 4.20  Clarke 1880 (IGN) ellipsoid

Name                             name    Clarke 1880 (IGN)

NGA two-letter code              twolet  CG

Semi-major axis                  a       6378249.2000000000000

Semi-minor axis                  b       6356514.9999634416278

Inverse flattening               1/f     293.46602080000000000

(First) eccentricity             e       0.082483256832670385055

Eccentricity squared             e
2

   0.0068034876577242657616

Meridional isoperimetric radius  R4      6367386.7366550997514

A2  =   8.5140099460764136776E-04

A4  =   7.858945456038187774E-07

A6  =   1.25727085106103462E-09

A8  =   2.5917718627340128E-12

A10 =   6.193726879043722E-15

A12 =   1.63109098395549E-17

B2  =  -8.5140135513650084564E-04

B4  =  -6.101145475063033499E-08

B6  =  -1.75687742410879760E-10

B8  =  -2.3098718484594067E-13

B10 =  -4.107860472919190E-16

B12 =  -7.97633133452512E-19

� 4.21  Clarke 1880 ellipsoid

Name                             name    Clarke 1880

NGA two-letter code              twolet  CD

Semi-major axis                  a       6378249.1450000000000

Semi-minor axis                  b       6356514.8695497759528

Inverse flattening               1/f     293.46500000000000000

(First) eccentricity             e       0.082483400044185038061

Eccentricity squared             e
2

   0.0068035112828490643388

Meridional isoperimetric radius  R4      6367386.6439805112873

A2  =   8.5140395445291970541E-04

A4  =   7.859000119464140978E-07

A6  =   1.25728397182445579E-09

A8  =   2.5918079321459932E-12

A10 =   6.193834639108787E-15

A12 =   1.63112504092335E-17

B2  =  -8.5140431498554106268E-04

B4  =  -6.101188106187092184E-08

B6  =  -1.75689577596504470E-10

B8  =  -2.3099040312610703E-13

B10 =  -4.107932016207395E-16

B12 =  -7.97649804397335E-19

� 4.22  Coverage of the ellipsoid

The statements about regions of validity in Subsection 3.7 are true also for the above ellipsoids.  This is because the

ellipsoids above, listed after “WGS 84 ellipsoid” are not severely flatter than the WGS 84 ellipsoid, and because the

validity regions defined in Subsection 3.7 are more restrictive than what is theoretically possible.  

� 4.23  Sphere

For a sphere of radius a, the formulas of Section 3 are applicable by setting f = e2 = e = 0 and b = R4 = a and setting

all the coefficients a2, a4, ..., b12 to zero.
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5.  Transverse Mercator with Parameters

Sections  3  and  4  presented  the  basic  form  of  transverse  Mercator.   In  this  section,  the  basic  form  is  extended  two

ways:  Firstly, where those sections measured longitude from the prime meridian, this section will allow longitude to

be  measured  from any  specified  meridian  (“central  meridian”).   Secondly,  the  easting-northing-pairs  x, y  obtained

from those sections will be subjected to a homothetic transformation in this section.  (A transformation is homothetic

if it consists of a translation and/or a proportional re-sizing.  Rotations and other modes of stretching/shrinking are not

allowed).

This section concludes with a review of the sources consulted in the development of this document.

� 5.1  Preliminary general form

Let  f1  and  f2  be  the  functions  from  Subsection  3.2  that  define  the  forward  mapping  of  the  transverse  Mercator

projection  in  its  basic  form.  Let  Λ0  be  a  constant  in  radians,  let  k0 > 0 be  a  unitless  constant,  and  let  xcmand yeq  be

constants in meters.  Then a preliminary general form of the transverse Mercator forward mapping equations is:

(15)
x = k0 f1Λ - Λ0, Φ + xcm

y = k0 f2Λ - Λ0, Φ + yeq

The constants, also called parameters, have these notation, names, and units:

0           central meridian,  CM radians

k0           central scale factor,  central scale (unitless)

xcm         central meridian easting,  CM easting meters

yeq         Equator northing meters

The parameter k0 controls the proportional re-sizing and the parameters xcm and yeq control the translation mentioned

above.  The corresponding inverse mapping equations are:

(16)

Λ = Λ0 + g1

x - xcm

k0

,
y - yeq

k0

Φ = g2

x - xcm

k0

,
y - yeq

k0

where  functions  g1  and  g2  are  the  inverse  mapping  equations  of  the  basic  form of  transverse  Mercator  specified  in

Subsection 3.5.

The quantity Λ computed according to Eq. (5.16) lies in the interval Λ0 - Π < Λ £ Λ0 + Π.  To convert it to a longitude

lying in a different interval (of length 2Π), the quantity 2Π should be added or subtracted to it as necessary.

The list, Λ0, k0, xcm, yeq, is a set of unique independently-specifiable parameters.

� 5.2  Origin

The equations and parameters of Subsection 5.1 accomplish the goals stated in the Section 5 introduction, which were

to (i) specify a meridian of reference (the meridian Λ0), (ii) apply a proportional re-sizing (the factor k0) and (iii) apply

a translation (the vector xcm, yeq).   We should be done.  However, for convenience, an alternate method to accom-

plish the translation has been adopted.  This is now explained:

A point  on  the  reference  ellipsoid  is  selected  for  special  treatment.   It  must  lie  in  the  transverse  Mercator  coverage

area  (i.e.  lie  within  70°  of  longitude  from the  central  or  anti-central  meridian  or  lie  within  70°  of  latitude  from the

North or South Pole), and is called the Origin.  Let its longitude and latitude be notated Λorigin and Φorigin, respectively.

On the map projection plane, the Origin is to have rectangular coordinates x, y = xorigin, yorigin.  This will determine

the translation under consideration.

The above parameters have these notations, names, abbreviations, and units:

Λorigin             Origin longitude radians

Φorigin             Origin latitude radians

xorigin             (Origin easting), False Easting, FE meters

yorigin             (Origin northing), False Northing, FN meters
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Λorigin             Origin longitude radians

Φorigin             Origin latitude radians

xorigin             (Origin easting), False Easting, FE meters

yorigin             (Origin northing), False Northing, FN meters

(If  there  was  an  opportunity  to  revise  the  terminology,  “Origin  easting”  and  “Origin  northing”  would  make  sense.

Accepted terminology is “False Easting” and “False Northing”).

� 5.3  Given Λorigin, Φorigin, xorigin, yorigin, compute xcm, yeq

Let  the  reference  ellipsoid  and  transverse  Mercator  parameters  Λ0  and  k0  be  fixed.  Let  the  parameters

Λorigin, Φorigin, xorigin, yorigin  be  given.  To  obtain  values  for  the  parameters  xcm, yeq  that  yield  the  same  translation,

the following applies:

(17)

xcm = xorigin - k0 f1Λorigin - Λ0, Φorigin
yeq = yorigin - k0 f2Λorigin - Λ0, Φorigin

� 5.4  General form of transverse Mercator

The general form of transverse Mercator is Eqs. (5.15 and 5.16) with the further stipulations that xcm and yeq are taken

as  intermediate  variables  computed  according  to  Eq.  (5.17)  and  that  the  list  Λ0, k0, Λorigin, Φorigin, xorigin, yorigin  is

adopted as the general form’s set of (non-unique) independently-specifiable parameters.

Not all authorities provide the option to allow an Origin longitude distinct from the central meridian.  When the set of

parameters has only one special longitude, Λorigin = Λ0 should be assumed.

� 5.5  Coverage of the ellipsoid

The statements  in  Subsection 3.7  about  the  regions of  validity  for  the  forward and inverse  mapping equations carry

over to the general  form of transverse Mercator if  Λ  is  replaced by Λ - Λ0  and x  is  replaced by x - xcm k0  and y  is

replaced by y - yeqk0.

� 5.6  History and sources

A history of the development of transverse Mercator is outside the scope of this document, but some aspects should be

mentioned.  Transverse Mercator as defined in Subsection 3.1 and extended in Subsections 5.1 or 5.4 for parameters is

sometimes given the name Gauss-Krüger or the phrase “of Gauss-Krüger type” after its inventors C. F. Gauss and L.

Krüger.   This  is  done  to  distinguish  it  from some  historical  versions  (Gauss-Lambert,  Gauss-Schreiber)  that  do  not

adhere to Requirement 3 of Subsection 3.1.

The formulas in Subsections 3.2 and 3.5 are extensions of the work of Krüger (1912).  Krüger carried out an expan-

sion to 4th order, i.e. obtaining coefficients a2, a4, a6, a8 to some precision, and this resulted in equations which were

accurate  to  within  10-6  meters  for  points  located  within  1000 km of  the  central  meridian.   The  algorithms given in

Section 3 extend Krüger’s method to 6th order and are based on the work of [4], [9], and [15].  Variations of Krüger’s

algorithms  are  in  use  by  the  national  geodetic  institutes  of  several  European  countries.  Recently  the  Oil  and  Gas

Producers  (formerly  EPSG)  added  some  version  of  this  method  to  their  compendium  of  coordinate  conversion

formulas [6].  Another reference for the basic idea of Krüger’s method is Section 5.1.6, “Gauss-Kruger projection for

a wide zone” of [1].

An  international  standard  for  spatial  reference  frames  and  their  coordinates,  including  some  map  projections,  is

presented  in  [8].   The  mathematical  formulas  it  adopted  for  transverse  Mercator  do  imply  and  are  implied  by  the

theoretical definition in this document (Subsection 3.1).  Its choice of parameters is the same as Subsection 5.4 with

Λorigin = Λ0.

� 5.7  Old v. new

Reference [3], i.e., Edition 1 of this document, and references [16] and [17] used algorithms based on an expansion in

Λ - Λ0.  The major drawback of this approach is that it has a much more restricted domain of applicability, particu-

larly at high latitudes.  In contrast, the algorithms given in Subsections 3.2 and 3.5 are vast improvements.  They offer

better accuracy, greater ellipsoid coverage, faster execution, simpler logic, and easier software coding.

The choice of parameters in Subsection 5.4 follows current practice except that providing Λorigin as a parameter distinct

from Λ0  is  new.   This  is  recommended for  its  naturalness  (see  Subsection  5.2)  and its  flexibility  in  specifying elec-

tronic-drafting-table coordinates, especially when the map sheet has multiple plans.
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The choice of parameters in Subsection 5.4 follows current practice except that providing Λorigin as a parameter distinct

from Λ0  is  new.   This  is  recommended for  its  naturalness  (see  Subsection  5.2)  and its  flexibility  in  specifying elec-

tronic-drafting-table coordinates, especially when the map sheet has multiple plans.

Assessments  of  software  packages  in  current  use  at  DoD are  outside  the  scope  of  this  document.   If  the  transverse

Mercator routines are satisfactory with respect to accuracy, ellipsoid coverage, execution speed, and code maintainabil-

ity, they need not be replaced with the algorithms specified here.  
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6.  Transverse Mercator Auxiliary Functions

Every  conformal  map  projection  comes  with  two  auxiliary  functions:  point-scale  and  convergence-of-meridians

(CoM).  The formulas for these for transverse Mercator are the subject of this section.  Detailed explanations of the

importance and usefulness of these functions are outside the scope of this document, but some introductory definitions

will be offered.

� 6.1  Point-scale

Loosely,  point-scale  is  the  function  which  tells  how  the  map  projection  enlarges  or  reduces  small  distances  when

transferring them from the reference ellipsoid to the map projection plane.  It is location specific (it varies from point

to point); it is independent of direction (conformality is required) and it is a unitless ratio (proportionality is assumed).

Let Σ (sigma, for “s” in “scaling”) be the notation for this function so that ΣP is the value of this function at position

P.   If  points  A  and  B  on  the  reference  ellipsoid  are  one  meter  apart,  then  on  the  map  projection  plane  they  will  be

ΣA » ΣB meters apart.

A precise definition using the differential calculus is available in the map projection literature [1], [8], [16], or [17],

where it might be called scale, local scale, local scale function, scale distortion, or point distortion.

� 6.2  Convergence-of-meridians

Convergence-of-meridians (CoM) is the function which gives the angles of intersection between the meridians and the

map projection’s vertical lines, i.e. the lines x = constant.  More precisely, it is the angle from true north to map north

at  such  an  intersection  point,  where  the  positive  sense  of  the  rotation  is  clockwise.   True  north  is  tangent  to  the

meridian  and  points  in  the  direction  of  increasing  latitude.   Map  north  is  tangent  to  (and  coincident  with)  the  line

x = constant and points in the direction of increasing y coordinate.  All this takes place on the map projection plane.

The  symbol  for  CoM  will  be  Γ  (gamma,  for  “g”  in  “grid  declination”  and  “grid  convergence”,  synonyms  for  CoM

when the map projection is one of the universal grids UTM or UPS).

� 6.3  Given Λ, Φ, compute Σ, Γ — basic case

The basic form of transverse Mercator (Section 3) is handled first.  Let a be the semi-major axis and e be the eccentric-

ity of the reference ellipsoid.  When it is desired to emphasize the functional dependence of point-scale Σ and CoM Γ

on longitude Λ and latitude Φ, the notations f3 and f4 will be used.  

The formulas for Σ and Γ are:

Σ = f3Λ, Φ =
2 R4 a w cosh u Σ1

2 + Σ2
2

1 + sin Φ P + 1 - sin Φ P

Γ = f4Λ, Φ = arctan cos Λ, sin Χ sin Λ  + arctan Σ1, Σ2

where:

Σ1 = 1 + 2 a2 cosh2 u cos2 v + 4 a4 cosh4 u cos4 v + ... + 12 a12 cosh12 u cos12 v
Σ2 = 2 a2 sinh2 u sin2 v + 4 a4 sinh4 u sin4 v + ... + 12 a12 sinh12 u sin12 v

w = 1 - e2 sin2
Φ

P = exp e arctanh e sin Φ =
1 + e sin Φ

1 - e sin Φ

e2

and where  u  and v  are  computed by  Eq.  (3.8)  of  Subsection 3.2  and R4  and the  coefficients  a2,  a4,  ...,  a12  have  the

same  values as in Sections 3 and 4.

Depending on their requirements, software developers should consider bundling the equations of this subsection with

those of Subsection 3.2 to obtain a single module which could be described, “Given Λ, Φ, compute x, y, Σ, Γ”.

� 6.4  Given Λ, Φ, compute Σ, Γ — general case

The general form of transverse Mercator is now considered.  Let the parameters Λ0, k0, Λorigin, Φorigin, xorigin, yorigin be

given.  The subset Λorigin, Φorigin, xorigin, yorigin  is  irrelevant to the computation of Σ  and Γ.   Subsection 6.3 gave the

formulas for Σ and Γ for the case that Λ0 = 0 and k0 = 1.  The formulas for the general case are:
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The general form of transverse Mercator is now considered.  Let the parameters Λ0, k0, Λorigin, Φorigin, xorigin, yorigin be

given.  The subset Λorigin, Φorigin, xorigin, yorigin  is  irrelevant to the computation of Σ  and Γ.   Subsection 6.3 gave the

formulas for Σ and Γ for the case that Λ0 = 0 and k0 = 1.  The formulas for the general case are:

Σ = k0 f3 Λ - Λ0, Φ
Γ = f4 Λ - Λ0, Φ

where f3  and f4  are  the  functions defined in  Subsection 6.3.   Software developers  could bundle  the  above with  Eq.

(5.15) as part of a module, “transverse Mercator preliminary general form”.
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7.  Universal Transverse Mercator (UTM)

This section gives the definition of UTM, some numerical examples of it, and the administrative rules added to it.

� 7.1  Definition of UTM

UTM is a family of 120 instances of the general form of the transverse Mercator projection.  Each instance is called a

zone and is given a zone number Z between -60 and +60 excluding zero.  (As a connection to other explanations, the

zone numbers can be arranged suggestively this way):

+1 +2 ... +30 +31 ... +59 +60

-1 -2 ... -30 -31 ... -59 -60

UTM zone Z is the transverse Mercator projection whose parameters Λ0, k0, Λorigin, Φorigin, xorigin, yorigin are specified:

Λ0 = -183 deg + 6 deg Z using the absolute value function applied to Z
k0 = 0.9996 exactly

Λorigin = Λ0

Φorigin = 0

xorigin = 500 000 meters

yorigin = 0 if Z > 0 but yorigin = 10 000 000 meters if Z < 0

Some comments  apply:   East  longitude  is  positive;  west  longitude  is  negative.   For  Z = ±1,  the  central  meridian  in

degrees  is   -183 ° + 6 °´1 = -177 °,  which  by  the  above  rule  may  be  notated  177°W.   The  notation  “-177 °W”  is

incorrect.  Never use both a prefix (plus or minus sign) and a suffix (“E” or “W”).  A longitude in degrees can be a

UTM central meridian if and only if it is a whole number divisible by three but not by two.

� 7.2  Examples of computing x, y , Σ, Γ, given Λ, Φ, Z

This  subsection  gives  numerical  examples  of  the  computation  of  the  easting  x,  northing  y,  point-scale  Σ,  and  grid-

declination Γ, given the longitude Λ,  latitude Φ, and UTM zone number Z.

The following points in the Indian Ocean are symmetrically arrayed about the Equator and 75°E, which is the central

meridian for Z = ±43.  Lon., Lat., and CoM are in degrees; easting and northing are in meters, and point-scale (“pt-

scale”) is a unitless ratio.  The computations pertain to the WGS 84 ellipsoid.

 E.g.  Lon   Lat     Z       easting         northing        pt-scale       CoM

 ---  (deg) (deg)  ---       (meters)        (meters)          ---         (deg)

   1    65     3    43   -616926.925721    336734.192052     1.015083    -0.528835

   2    74     3    43    388870.867643    331643.938073     0.999753    -0.052341

   3    75     3    43    500000.000000    331593.179548     0.999600     0.000000

   4    76     3    43    611129.132357    331643.938073     0.999753     0.052341

   5    85     3    43   1616926.925721    336734.192052     1.015083     0.528835

   6    65    -3    43   -616926.925721   -336734.192052     1.015083     0.528835

   7    74    -3    43    388870.867643   -331643.938073     0.999753     0.052341

   8    75    -3    43    500000.000000   -331593.179548     0.999600     0.000000

   9    76    -3    43    611129.132357   -331643.938073     0.999753    -0.052341

  10    85    -3    43   1616926.925721   -336734.192052     1.015083    -0.528835

Example 1, above, devolves to the example in Subsection 3.4.

The  same  points  are  re-computed  for  zone  Z = -43,  and  the  only  change  is  the  northing.   An  offset  of  10,000,000

meters has been added:

 E.g.  Lon   Lat     Z       easting         northing        pt-scale       CoM

 ---  (deg) (deg)  ---       (meters)        (meters)          ---         (deg)

  11    65     3   -43   -616926.925721  10336734.192052     1.015083    -0.528835

  12    74     3   -43    388870.867643  10331643.938073     0.999753    -0.052341

  13    75     3   -43    500000.000000  10331593.179548     0.999600     0.000000

  14    76     3   -43    611129.132357  10331643.938073     0.999753     0.052341

  15    85     3   -43   1616926.925721  10336734.192052     1.015083     0.528835

  16    65    -3   -43   -616926.925721   9663265.807948     1.015083     0.528835

  17    74    -3   -43    388870.867643   9668356.061927     0.999753     0.052341

  18    75    -3   -43    500000.000000   9668406.820452     0.999600     0.000000

  19    76    -3   -43    611129.132357   9668356.061927     0.999753    -0.052341

  20    85    -3   -43   1616926.925721   9663265.807948     1.015083    -0.528835
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 E.g.  Lon   Lat     Z       easting         northing        pt-scale       CoM

 ---  (deg) (deg)  ---       (meters)        (meters)          ---         (deg)

  11    65     3   -43   -616926.925721  10336734.192052     1.015083    -0.528835

  12    74     3   -43    388870.867643  10331643.938073     0.999753    -0.052341

  13    75     3   -43    500000.000000  10331593.179548     0.999600     0.000000

  14    76     3   -43    611129.132357  10331643.938073     0.999753     0.052341

  15    85     3   -43   1616926.925721  10336734.192052     1.015083     0.528835

  16    65    -3   -43   -616926.925721   9663265.807948     1.015083     0.528835

  17    74    -3   -43    388870.867643   9668356.061927     0.999753     0.052341

  18    75    -3   -43    500000.000000   9668406.820452     0.999600     0.000000

  19    76    -3   -43    611129.132357   9668356.061927     0.999753    -0.052341

  20    85    -3   -43   1616926.925721   9663265.807948     1.015083    -0.528835

The  following  points  in  the  Arctic  region  are  symmetrically  arrayed  about  the  North  Pole,  and  about  the  central

meridian 75°E and its anti-meridian 105 °W = 255 °E.  (The first and last points are the same):

 E.g.  Lon   Lat     Z       easting         northing        pt-scale       CoM

 ---  (deg) (deg)  ---       (meters)        (meters)          ---         (deg)

  21  -105    80    43   500000.000000   11114344.070054     0.999600  -180.000000

  22   -45    80    43  -469262.805167   10560437.037836     1.011097  -120.381138

  23    15    80    43  -469262.805167    9435492.848206     1.011097   -59.618862

  24    75    80    43   500000.000000    8881585.815988     0.999600     0.000000

  25   135    80    43  1469262.805167    9435492.848206     1.011097    59.618862

  26   195    80    43  1469262.805167   10560437.037836     1.011097   120.381138

  27   255    80    43   500000.000000   11114344.070054     0.999600   180.000000

  

� 7.3  Examples of computing Λ, Φ, given Z, x, y

This  subsection gives numerical  examples of  the computation of  the longitude and latitude,  given the zone number,

easting and northing.  Easting and northing are in meters; longitude and latitude are in degrees.  The reference ellip-

soid is WGS 84.

 E.g.    Z   easting   northing            Lon             Lat

 ---   ---  (meters)   (meters)           (deg)           (deg)

   1    43    500000          0      75.0000000000     0.0000000000

   2    43    600000          0      75.8986376602     0.0000000000

   3    43   1000000          0      79.4887438844     0.0000000000

   4    43    500000    2000000      75.0000000000    18.0887089431

   5    43    600000    2000000      75.9450469497    18.0863946381

   6    43   1000000    2000000      79.7195800291    18.0310022588

   7    43    500000    4000000      75.0000000000    36.1447180988

   8    43    600000    4000000      76.1114780322    36.1395604499

   9    43   1000000    4000000      80.5461340659    36.0161920195

  10    43    500000    6000000      75.0000000000    54.1481041039

  11    43    600000    6000000      76.5307012564    54.1383733178

  12    43   1000000    6000000      82.6176089075    53.9061008395

  13    43    500000    8000000      75.0000000000    72.0992225251

  14    43    600000    8000000      77.9124923218    72.0775365270

  15    43   1000000    8000000      89.2856856739    71.5657403285

  16    43    500000   10000000    -105.0000000000    89.9817727747

  17    43    600000   10000000     166.1657933474    89.1041886301

  18    43   1000000   10000000     165.2329617955    85.5261156460

  19    43    500000   15000000    -105.0000000000    45.1168391850

  20    43    600000   15000000    -106.2712189672    45.1097638704

  21    43   1000000   15000000    -111.3373820793    44.9406465210

  22    43    500000   20000000    -105.0000000000    -0.0368235977

  23    43    600000   20000000    -105.8986378445    -0.0368190381

  24    43   1000000   20000000    -109.4887448015    -0.0367098873

� 7.4  Administrative rules

For standard uses at DoD, there are amendments to UTM as defined above, called administrative rules.  The mathemat-

ics does not require them.  The most important of these rules are:

For Z > 0, UTM zone Z is intended for the portion of the reference ellipsoid given by:

Λ0 - 3 deg £ Λ < Λ0 + 3 deg and 0 £ Φ < 84 deg

For Z < 0, UTM zone Z is intended for:

Λ0 - 3 deg £ Λ < Λ0 + 3 deg and - 80 deg £ Φ < 0

   

The inequalities above are strict  or  non-strict  according to the administrative rule that  a  zone owns its  southern and

western boundaries.  In other words, points on a zone’s southern and western boundaries belong to the zone but points

on its northern and eastern boundaries do not.

The above has exceptions (more administrative rules) for parts of Norway and the Arctic.  These are given in [11] and

are included in Subsection 7.5.
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Examples 2,3,4 in Subsection 7.2 comply with the administrative rules; Examples 1,5-10 do not.

Software developers should be aware that the administrative rules cannot be applied in every situation, such as when

overlapping or partly overlapping UTM grids are mandated for a map sheet.   Again, see [11].  Geographic informa-

tion analysts should be aware that for analytical purposes the administrative rules can be put aside in favor of obtain-

ing continuous coordinates for a region of interest.  For example, UTM zone 16 coordinates could be used for hurri-

cane Katrina damage studies even where some of the damage is west of 90°W.  

� 7.5  Given Λ, Φ, compute Z

This subsection gives the procedure to determine the value of  Z  for  which UTM zone Z  contains the point  Λ, Φ  in

compliance  with  the  administrative  rules.   At  the  outset,  if  Λ = 180 deg  is  given,  it  should  be  converted  to

Λ = -180 deg.   The  inequalities  -180 deg £ Λ < 180 deg   and   -80 deg £ Φ < 84 deg   should  be  confirmed.

Then, in pseudo-code, the procedure is:

Z = Floor
Λ + 180 deg

6 deg
+ 1

if Φ < 0

Z = -Z

if Z = 31 and 56 deg £ Φ < 64 deg and Λ ³ 3 deg

Z = 32

else if Z = 32 and Φ ³ 72 deg

if Λ < 9 deg

Z = 31

else

Z = 33

else if Z = 34 and Φ ³ 72 deg

if Λ < 21 deg

Z = 33

else

Z = 35

else if Z = 36 and and Φ ³ 72 deg

if Λ < 33 deg

Z = 35

else

Z = 37

� 7.6  Hierarchy of subroutines

Software design considerations are mostly beyond the scope of this document, but the following is recommended.  Let

the foregoing formulas and logic be gathered into subroutines under the following hierarchy, where each subroutine is

a client of the one below it:

è UTM with administrative rules

è UTM

è transverse Mercator general form

è transverse Mercator preliminary general form

è transverse Mercator basic form
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8.  Basic Polar Stereographic

The  other  universal  grid  system  is  Universal  Polar  Stereographic  (UPS)  and  is  based  on  the  polar  stereographic

projection.  This section gives the formulas for the polar stereographic in its basic form.  Later in Section 9, various

parameters  such  as  zone  (north  or  south),  central  meridian  and  central  scale  factor  will  be  introduced.   They  will

enable polar stereographic to be offered in its commonly-used general form.

Stereographic projections in general are outside the scope of this document.  The only stereographic projection treated

herein is the polar stereographic projection.

� 8.1  Given Λ, Φ, compute x, y , Σ, Γ

The basic form of the polar stereographic projection chosen for this document is centered at the north Pole and has the

following for its forward mapping equations.  Let Λ, Φ  be the longitude and latitude, respectively, of a point on the

reference  ellipsoid  excepting  the  south  Pole.   The  rectangular  coordinates  x, y,  the  point-scale  Σ  (Subsection  6.1)

and the convergence-of-meridians Γ (Subsection 6.2) corresponding to the given point are:

(18)

x = f1Λ, Φ =
2 a sin Λ cos Χ

k90 1 + sin Χ

y = f2Λ, Φ =
-2 a cos Λ cos Χ

k90 1 + sin Χ

Σ = f3Λ, Φ =
2 1 - e2 sin2 Φ exp e arctanh e sin Φ

k901 + sin Φ
=

2 1 + e sin Φ1+e 1 - e sin Φ1-e

k901 + sin Φ

Γ = f
4
Λ, Φ = Λ

where, from Subsection 2.8,

cos Χ, sin Χ = PhiToChi Φ

and where, from Section 2, a, e are the semi-major axis and eccentricity of the reference ellipsoid.  The constant k90

depends only on the reference ellipsoid and is computed by:

(19)k90 = 1 - e2 exp e arctanh e = 1 + e1+e 1 - e1-e

Where two formulas are given, namely for Σ = f3Λ, Φ and for k90, the one using arctanh is preferred.  (The notation

“k90” was chosen because its value is determined by the desire to have Σ = 1 at the north Pole for the basic form).

For readers who are familiar with polar stereographic, or who have looked ahead to Section 9, it can be stated that the

parameter  choices  implied  by  Eq.  (8.18)  are  (i)  a  central  meridian  of  longitude  0  deg,  (ii)  a  central  scale  factor  of

1.0000, (iii) the north Pole adopted as the “Origin” point, and (iv) a False Easting and a False Northing of 0 mE and

0 mN, respectively, assigned to that origin.  This is the basic form of polar stereographic.

� 8.2  Given x, y, compute Λ, Φ

The inverse mapping equations for the basic form are:

(20)
Λ = g1x, y = arctan -y, x
Φ = g2x, y = ChiToPhi cos Χ, sin Χ

where the function ChiToPhi is defined in Subsection 2.9 and cos Χ and sin Χ are computed by:

cos Χ =
2 r

1 + r2

sin Χ =
1 - r2

1 + r2

where:
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r2
=

k90 x

2 a

2

+
k90 y

2 a

2

and r = r2

Longitude at the Poles is ambiguous, i.e. not well defined.  For the forward mapping equations (Section 8.1) this was

not a problem.  The formulas there will correctly convert Φ = ±90 deg no matter what numerical value is used for Λ.

In this subsection, the ambiguity is a problem.  The attempted computation of Λ in Eq. (8.20) will fail when the math-

library  routine  for  arctangent  encounters  arctan0, 0.   This  will  happen  at  a  Pole,  where  x = 0  and  y = 0.   To  get

around  this,  let  the  software  define  a  constant,  Λpole = 0  (suggested),  and  execute  Λ = Λpole  if  x = 0  and  y = 0,  and

execute Eq. (8.20) otherwise.
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9.  Polar Stereographic with Parameters

Section 8 presented the basic form of the polar stereographic projection.  In this section, the basic form is extended

two ways:  (i) Where Section 8 measured the longitude from the prime meridian, this section will allow longitude to

be  measured  from any  specified  meridian  (“central  meridian”).   Then  (ii),  the  easting-northing  pairs  x, y  obtained

from that section will be subjected to a homothetic transformation in this section, i.e. subjected to a translation and/or

a proportional re-sizing.  This follows the pattern of Section 5.  (For polar stereographic but not for transverse Merca-

tor, the combination of (i) and (ii) is a similarity transformation).

� 9.1  General form (k0)

Let Z = ±1 be a flag such that Z = 1 (respectively, Z = -1) indicates the north (respectively, south) polar stereographic

projection.   Let  Λ0  be  a  constant  in  radians,  k0 > 0 be a  unitless  constant,  and xpole  and ypole  be  constants  in  meters.

Then a general form of the polar stereographic forward mapping equations is:

(21)

For Z = +1,

x = k0 f1Λ - Λ0, Φ + xpole

y = k0 f2Λ - Λ0, Φ + ypole

Σ = k0 f3Λ - Λ0, Φ
Γ = f4Λ - Λ0, Φ = Λ - Λ0

For Z = -1,

x = k0 f1Λ - Λ0, -Φ + xpole

y = -k0 f2Λ - Λ0, -Φ + ypole

Σ = k0 f3Λ - Λ0, -Φ
Γ = - f4Λ - Λ0, -Φ = -Λ + Λ0

where  x, y, Σ, Γ  are  the  easting,  northing,  point-scale  and  CoM  corresponding  to  the  reference  ellipsoid  point  at

longitude Λ and latitude Φ, and where functions f1, f2, f3, and f4 are defined in Subsection 8.1.  

The constants, also called parameters, have these notations, names and units:

Λ0 central meridian,  radians

longitude down from the Pole (Z = 1),  

longitude up from the Pole (Z = -1).

k0 central scale,  point-scale at the Pole,  scale at the Pole (unitless)

xpole easting of the Pole meters

ypole northing of the Pole meters

The parameter k0  controls the proportional re-sizing and the parameters xpole  and ypole  control the translation men-

tioned in the introduction to this section.  The corresponding inverse mapping equations are:

(22)

For Z = 1,

Λ = Λ0 + g1

x - xpole

k0

,
y - ypole

k0

Φ = g2

x - xpole

k0

,
y - ypole

k0

For Z = -1,

Λ = Λ0 + g1

x - xpole

k0

,
y - ypole

-k0

Φ = -g2

x - xpole

k0

,
y - ypole

-k0

The quantity Λ computed according to Eq. (9.22) lies in the interval Λ0 - Π < Λ £ Λ0 + Π.  To convert it to a longitude

lying in a different interval (of length 2Π), the quantity 2Π should be added or subtracted to it as necessary.

The list Z, Λ0, k0, xpole, ypole is a set of unique independently-specifiable parameters.
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The list Z, Λ0, k0, xpole, ypole is a set of unique independently-specifiable parameters.

� 9.2  Origin

(This subsection is deliberately almost the same wording as Subsection 5.2 “Origin”).

The equations and parameters of Subsection 9.1 accomplish the goals stated in the Section 9 introduction, which were

to (i) specify a meridian of reference (the meridian Λ0), (ii) apply a proportional re-sizing (the factor k0) and (iii) apply

a  translation  (the  vector  xpole, ypole).   More  options  are  not  a  necessity.   However,  for  convenience,  an  alternate

method to accomplish the translation is possible, and is now explained.

A  point  on  the  reference  ellipsoid  is  selected  for  special  treatment.   It  must  lie  in  the  ellipsoid  coverage  area  (i.e.

outside  a  small  region around the  opposite  Pole)  and is  called  the  Origin.   Let  its  longitude and latitude  be  notated

Λorigin  and  Φorigin,  respectively.   On  the  map  projection  plane,  the  Origin  is  to  have  rectangular  coordinates

x, y = xorigin, yorigin.  This will determine the translation under consideration.

The above parameters have these notations, names, and units:

Λorigin             Origin longitude radians

Φorigin             Origin latitude radians

xorigin             (Origin easting), False Easting, FE meters

yorigin             (Origin northing), False Northing, FN meters

(If  there  was  an  opportunity  to  revise  the  terminology,  “Origin  easting”  and  “Origin  northing”  would  make  sense.

Accepted terminology is “False Easting” and “False Northing”).

� 9.3  Given Λorigin, Φorigin, xorigin, yorigin, compute xpole, ypole

Let  the  reference  ellipsoid  and  polar  stereographic  parameters  Z,  Λ0,  and  k0  be  fixed.  Let  the  parameters

Λorigin, Φorigin, xorigin, yorigin be given. To obtain values for the parameters xpole, ypole that yield the same translation,

the following applies:

(23)

For Z = 1,

xpole = xorigin - k0 f1Λorigin - Λ0, Φorigin
ypole = yorigin - k0 f2Λorigin - Λ0, Φorigin

For Z = -1,

xpole = xorigin - k0 f1Λorigin - Λ0, -Φorigin
ypole = yorigin + k0 f2Λorigin - Λ0, -Φorigin

� 9.4  Other meanings of “Origin”

The polar stereographic projection as defined in this document should be treated as a map projection in its own right

and not as a special case of more general kinds of map projections that are called “stereographic”.  Consequently, the

set  of  parameters  has  been  tailored  to  this  purpose.   Moving  the  origin  as  accomplished  by  choosing  values  for

Λorigin, Φorigin, xorigin, yorigin  and  applying  Eq.  (9.23)  has  no  affect  on  the  shape,  size,  or  orientation  of  any  feature

portrayed on the map.  It affects only the up/down placement of the x-axis and left/right placement of the y-axis on the

map projection plane.

By contrast, literature and software that treats the more general “stereographic” projection (not defined in this docu-

ment)  might  use  the  term  “Origin”  differently.   Its  use  might  include  a  parameter  called  “latitude  of  Origin”  and

require it to be 90° to obtain the polar stereographic projection.

In this document, the concept of origin and the meaning of Λorigin, Φorigin, xorigin, yorigin  are consistent between polar

stereographic and transverse Mercator.  This is to the advantage of cartographers and geographic information analysts

having to try both map projections.

� 9.5  General form (k0, arbitrary origin)

An alternate general form of the polar stereographic projection is Eqs. (9.21 and 9.22) with the further stipulations that

xpole  and  ypole  are  taken  as  intermediate  variables  computed  according  to  Eq.  (9.23)  and  that  the  list

Z, Λ0, k0, Λorigin, Φorigin, xorigin, yorigin  is  adopted as  the  general  form’s  set  of  (non-unique)  independently-specifiable

parameters.   (The  list  is  non-unique  because  more  than  one  quadruple  Λorigin, Φorigin, xorigin, yorigin  will  define  the

same translation, i.e. the same xpole, ypole values).
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An alternate general form of the polar stereographic projection is Eqs. (9.21 and 9.22) with the further stipulations that

xpole  and  ypole  are  taken  as  intermediate  variables  computed  according  to  Eq.  (9.23)  and  that  the  list

Z, Λ0, k0, Λorigin, Φorigin, xorigin, yorigin  is  adopted as  the  general  form’s  set  of  (non-unique)  independently-specifiable

parameters.   (The  list  is  non-unique  because  more  than  one  quadruple  Λorigin, Φorigin, xorigin, yorigin  will  define  the

same translation, i.e. the same xpole, ypole values).

� 9.6  Standard parallel

The standard parallel, also called the latitude of unity scale, is the value of Φ in Eq. (9.21) that gives Σ = 1.  It will

exist if k0 £ 1.  Its notation in this document is Φ1.

� 9.7  Given Φ1, compute k0

Given the standard parallel Φ1, the formula to find the scale factor k0 at the relevant Pole is:

(24)

For Z = 1,

k0 =
1

f30, Φ1
=

k901 + sin Φ1

2 1 + e sin Φ11+e 1 - e sin Φ11-e

For Z = -1,

k0 =
1

f30, -Φ1
=

k901 - sin Φ1

2 1 - e sin Φ11+e 1 + e sin Φ11-e

� 9.8  Given k0, compute Φ1

For  Z = ±1,  let  a  value  k0 < 1  for  the  scale  factor  at  the  Pole  be  given.   Then  the  method  to  compute  the  standard

parallel Φ1 is:

Φ1 = Z arcsin s

where s is the limit (within the desired resolution) of the sequence s1, s2, s3, ... whose members are computed by:

s1 = -1 + 2 k0

sn+1 =
2 k0 1 + e sn1+e 1 - e sn1-e

k90

- 1

� 9.9  General form (Φ1, arbitrary origin)

Another  general  form of  the  polar  stereographic  projection is  Eqs.  (9.21  and 9.22)  with  the  further  stipulations  that

xpole,  ypole,  and  k0  are  taken  as  intermediate  variables  computed  according  to  Eqs.  (9.23  and  9.24)  and  that  the  list

Z, Λ0, Φ1, Λorigin, Φorigin, xorigin, yorigin  is  adopted as  the general  form’s set  of  (non-unique) independently-specifiable

parameters.  Note that Φ1 replaces k0 in the list.

The adjectives “unique” and “independently-specifiable” and their negatives have been used carefully in this section

when  describing  lists  of  polar  stereographic  parameters.   As  another  example,  consider  the  list

Z, Λ0, k0, Φ1, xpole, ypole.  Its parameters are all unique, but they are not all independently-specifiable because both k0

and Φ1 are listed.
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� 9.10  Examples of conversions between Φ1 and k0

The  following  two  tables  pertain  to  the  north  polar  stereographic  projection  (Z = 1)  of  the  WGS  84  ellipsoid

(a = 6 378 137 and f -1 = 298.257223563).

In the table at left, the values of Φ1  are exact and the values of k0  are computed to as many digits shown.  In the table

at right, the values of k0 are exact, and the values of Φ1 are computed to as many digits as are shown.

1

degree

k0

unitless

75 0.017 259 384 673

60 0.067 773 950 243

45 0.147 883 853 421

30 0.251 891 492 664

15 0.372 562 837 459

0 0.501 678 277 625

15 0.630 570 160 065

30 0.750 629 794 742

45 0.853 799 593 615

60 0.933 069 071 736

75 0.982 966 757 777

80 0.992 404 648 246

81 0.993 844 677 874

82 0.995 134 351 941

83 0.996 273 262 333

84 0.997 261 048 527

85 0.998 097 397 746

86 0.998 782 045 101

87 0.999 314 773 702

88 0.999 695 414 760

89 0.999 923 847 656

90 1.000 000 000 000

k0

unitless

1

degree

0.1000 53.337 403 999 811

0.2000 37.116 011 177 617

0.3000 23.825 251 373 649

0.4000 11.763 627 302 241

0.5000 0.192 963 050 538

0.6000 11.385 608 705 462

0.7000 23.471 956 301 947

0.8000 36.808 078 424 089

0.9000 53.106 923 780 672

0.9100 55.064 894 505 323

0.9200 57.123 352 185 495

0.9300 59.302 785 064 482

0.9400 61.631 355 734 180

0.9500 64.149 649 327 832

0.9600 66.920 027 216 673

0.9700 70.047 603 511 896

0.9800 73.737 632 650 010

0.9900 78.520 890 585 055

0.9910 79.111 860 671 964

0.9920 79.736 353 686 644

0.9930 80.400 910 884 378

0.9940 81.114 517 868 594

0.9950 81.890 113 174 369

0.9960 82.747 558 146 254

0.9970 83.720 292 647 173

0.9980 84.873 530 910 724

0.9990 86.375 668 096 133

0.9991 86.561 716 515 710

0.9992 86.758 411 486 352

0.9993 86.967 824 204 285

0.9994 87.192 799 401 974

0.9995 87.437 432 634 553

0.9996 87.708 009 826 129

0.9997 88.015 112 711 542

0.9998 88.379 374 422 928

0.9999 88.854 064 538 034

1.0000 90.000 000 000 000
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10.  Universal Polar Stereographic (UPS)

This section gives the definition of UPS, some numerical examples of it, and the administrative rules added to it.

� 10.1  Definition of UPS

The  Universal  Polar  Stereographic  (UPS)  system  is  these  two  instances  of  the  polar  stereographic  projection  with

parameters.  The parameters fit Eqs. (9.21 and 9.22).

North UPS is defined by:

Z = 1

Λ0 = 0 longitude down from the Pole
k0 = 0.994 exactly
xpole = 2 000 000

ypole = 2 000 000

South UPS is defined by:

Z = -1

Λ0 = 0 longitude up from the Pole
k0 = 0.994 exactly
xpole = 2 000 000

ypole = 2 000 000

� 10.2  Examples of computing x, y , Σ, Γ, given Λ, Φ, Z

The following computations pertain to the WGS 84 ellipsoid.

 E.g.  Lon   Lat    Z        easting           northing       pt-scale    CoM

 ---  (deg) (deg)  ---       (meters)          (meters)         ---      (deg)

   1   ---    90    1    2000000.000000     2000000.000000    0.994000    ---

   2  -179    89    1    1998062.320046     2111009.610243    0.994076   -179

   3   -90    88    1    1777930.731071     2000000.000000    0.994303    -90

   4    -1    87    1    1994185.827038     1666906.254073    0.994682     -1

   5     0    86    1    2000000.000000     1555731.570643    0.995212      0

   6     1    85    1    2009694.068153     1444627.207468    0.995895      1

   7    89    84    1    2666626.157825     1988363.997132    0.996730     89

   8    90    83    1    2778095.750322     2000000.000000    0.997718     90

   9    91    82    1    2889442.490749     2015525.276426    0.998860     91

  10   179    81    1    2017473.190606     3001038.419357    1.000156    179

  11   180    80    1    2000000.000000     3112951.136955    1.001608    180

  12     0    40    1    2000000.000000    -3918313.984953    1.209619      0

  13  -179     3    1    1790630.987261    13994742.706481    1.883453   -179

  14   -90     2    1  -10206568.118587     2000000.000000    1.914973    -90

  15    -1     1    1    1783239.204558   -10418217.653909    1.947589     -1

  16     0     0    1    2000000.000000   -10637318.498257    1.981349      0

  17     1    -1    1    2224408.737826   -10856367.979638    2.016305      1

  18    90    -2    1   15083269.373905     2000000.000000    2.052510     90

  19   179    -3    1    2232331.498720    15310262.647286    2.090020    179

  20   180    -4    1    2000000.000000    15545537.944524    2.128897    180

� 10.3  Examples of computing Λ, Φ, given Z, x, y

The following computations pertain to the WGS 84 ellipsoid.

 E.g.    Z   easting    northing            Lon             Lat

 ---   ---  (meters)    (meters)           (deg)           (deg)

   1    -1         0          0     -135.0000000000     -64.9164123332

   2    -1   1000000          0     -153.4349488229     -70.0552944014

   3    -1   2000000          0     -180.0000000000     -72.1263610163

   4    -1   3000000          0      153.4349488229     -70.0552944014

   5    -1   4000000          0      135.0000000000     -64.9164123332

   6    -1         0    1000000     -116.5650511771     -70.0552944014

   7    -1   1000000    1000000     -135.0000000000     -77.3120791908

   8    -1   2000000    1000000      180.0000000000     -81.0106632645

   9    -1   3000000    1000000      135.0000000000     -77.3120791908

   10   -1   4000000    1000000      116.5650511771     -70.0552944014

   11   -1         0    2000000      -90.0000000000     -72.1263610163

   12   -1   1000000    2000000      -90.0000000000     -81.0106632645

   13   -1   2000000    2000000             ---         -90.0000000000

   14   -1   3000000    2000000       90.0000000000     -81.0106632645

   15   -1   4000000    2000000       90.0000000000     -72.1263610163

   16   -1         0    3000000      -63.4349488229     -70.0552944014

   17   -1   1000000    3000000      -45.0000000000     -77.3120791908

   18   -1   2000000    3000000        0.0000000000     -81.0106632645

   19   -1   3000000    3000000       45.0000000000     -77.3120791908

   20   -1   4000000    3000000       63.4349488229     -70.0552944014

   21   -1         0    4000000      -45.0000000000     -64.9164123332

   22   -1   1000000    4000000      -26.5650511771     -70.0552944014

   23   -1   2000000    4000000        0.0000000000     -72.1263610163

   24   -1   3000000    4000000       26.5650511771     -70.0552944014

   25   -1   4000000    4000000       45.0000000000     -64.9164123332
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 E.g.    Z   easting    northing            Lon             Lat

 ---   ---  (meters)    (meters)           (deg)           (deg)

   1    -1         0          0     -135.0000000000     -64.9164123332

   2    -1   1000000          0     -153.4349488229     -70.0552944014

   3    -1   2000000          0     -180.0000000000     -72.1263610163

   4    -1   3000000          0      153.4349488229     -70.0552944014

   5    -1   4000000          0      135.0000000000     -64.9164123332

   6    -1         0    1000000     -116.5650511771     -70.0552944014

   7    -1   1000000    1000000     -135.0000000000     -77.3120791908

   8    -1   2000000    1000000      180.0000000000     -81.0106632645

   9    -1   3000000    1000000      135.0000000000     -77.3120791908

   10   -1   4000000    1000000      116.5650511771     -70.0552944014

   11   -1         0    2000000      -90.0000000000     -72.1263610163

   12   -1   1000000    2000000      -90.0000000000     -81.0106632645

   13   -1   2000000    2000000             ---         -90.0000000000

   14   -1   3000000    2000000       90.0000000000     -81.0106632645

   15   -1   4000000    2000000       90.0000000000     -72.1263610163

   16   -1         0    3000000      -63.4349488229     -70.0552944014

   17   -1   1000000    3000000      -45.0000000000     -77.3120791908

   18   -1   2000000    3000000        0.0000000000     -81.0106632645

   19   -1   3000000    3000000       45.0000000000     -77.3120791908

   20   -1   4000000    3000000       63.4349488229     -70.0552944014

   21   -1         0    4000000      -45.0000000000     -64.9164123332

   22   -1   1000000    4000000      -26.5650511771     -70.0552944014

   23   -1   2000000    4000000        0.0000000000     -72.1263610163

   24   -1   3000000    4000000       26.5650511771     -70.0552944014

   25   -1   4000000    4000000       45.0000000000     -64.9164123332

� 10.4  Administrative rules

For standard uses at DoD, there are amendments to UPS as defined above, called administrative rules.  The mathemat-

ics  does  not  require  them.   They  are:   (i)  north  UPS  coordinates  (Z = 1)  may  be  used  for  the  region  defined  by

Φ ³ 84 deg, and (ii) south UPS coordinates (Z = -1) may be used for the region defined by Φ < -80 deg.

� 10.5  Hierarchy of subroutines

The suggested hierarchy of subroutines (where calls are made to subroutines further down the list) is the following:

è UPS with administrative rules

è UPS

è polar stereographic general forms

è routines to convert between k0 and Φ1

è polar stereographic basic form
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11.  Military Grid Reference System (MGRS)

The Military Grid Reference System (MGRS) is the pair, UTM and UPS taken together, with some digits dropped or

replaced  by  letters  and  with  other  notations  and  rules  added.   Subsections  11.1  to  11.8  specify  the  UTM to  MGRS

conversion, and Subsections 11.9 to 11.12 specify the UPS to MGRS conversion.  The inverse conversion, MGRS to

UTM or UPS , is explained in Subsections 11.13 and 11.14. The section ends with a re-print of some old but still valid

tables about MGRS lettering.

The  agenda  of  this  document  is  the  programming  logic  needed  by  the  software  developer.   Basic  explanations  of

MGRS for  land navigation and policies for  tactical  forces to  report  positions or  define operational  areas are  outside

the scope of this document.

� 11.1  Character string for the UTM portion of MGRS

The UTM portion of MGRS is the following sequence of letters and digits.  From left to right they are:

(i) One or two decimal digits, representing the UTM zone number in absolute value

(ii) A letter in the range "C" to "X", representing an interval of latitude

(iii) Two letters — an easting letter and a northing letter — representing a square that is 100 000 meters on a

side

(iv) Zero to five decimal digits, representing the UTM easting to desired precision

(v) The same number of decimal digits, representing the UTM northing to the same precision

To facilitate  machine-to-machine communication,  an MGRS string is  to  have no intermediate spaces or  punctuation

marks and all the letters are to be capitals.  Letters “I” and “O” are never used.  For (i), if the UTM zone number is

less than 10 in absolute value, a leading zero is preferred but not mandated.  Consequently, software for information

processing  should  accept  both  5NAB123123  and  05NAB123123,  for  example,  but  should  produce  only  05N-

AB123123.  End-user devices and map margin notes may show 5NAB123123.

� 11.2  Lettering scheme “AA”

This subsection specifies one of the schemes for picking two letters to represent the 100 000 meter square, i.e. item

(iii) of Subsection 11.1.

Let Z be the UTM zone and x, y be the UTM easting and northing (in meters) of a point within these limits: 

100 000 £ x < 900 000

0 £ y < 9 700 000 if Z > 0

300 000 £ y < 10 000 000 if Z < 0

The 100 000 meter square identifier consists of an easting letter followed by a northing letter.  The easting letter is the

conversion of Floor x 100 000 according to the following set of tables:

1 2 3 4 5 6 7 8

A B C D E F G H
 ,   if Mod  Z , 3 = 1

1 2 3 4 5 6 7 8

J K L M N P Q R
 ,   if Mod  Z , 3 = 2

1 2 3 4 5 6 7 8

S T U V W X Y Z
 ,   if Mod  Z , 3 = 0

where, for n > 0,  Mod n, 3 is the remainder when n is divided by 3.

The northing letter is the conversion of Floor  Mod y, 2 000 000 100 000 according to the following set of tables:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A B C D E F G H J K L M N P Q R S T U V
 ,  if  Z   is odd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F G H J K L M N P Q R S T U V A B C D E
 ,  if  Z   is even

Notice that the letters “I” and “O” are deliberately omitted from the above tables.  The notation “AA” for this lettering

scheme comes from the fact that for Z = 1 (and other Z), the southwest corner of allowed values of x, y is square AA.
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Notice that the letters “I” and “O” are deliberately omitted from the above tables.  The notation “AA” for this lettering

scheme comes from the fact that for Z = 1 (and other Z), the southwest corner of allowed values of x, y is square AA.

� 11.3  Lettering scheme “AL”

This subsection specifies another scheme for picking two letters to represent the 100 000 meter square, i.e. item (iii) of

Subsection 11.1.

Let Z be the UTM zone and x, y  be the UTM easting and northing of a point within the same limits as for scheme

“AA”.

The 100 000 meter square identifier consists of an easting letter followed by a northing letter.  The easting letter is the

same as for scheme “AA”.

The northing letter is the conversion of Floor  Mod y, 2 000 000 100 000 according to the following set of tables:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L M N P Q R S T U V A B C D E F G H J K
 ,  if  Z   is odd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R S T U V A B C D E F G H J K L M N P Q
 ,  if  Z   is even

Notice that the letters “I” and “O” are deliberately omitted from the above tables.  The notation “AL” for this lettering

scheme comes from the fact that for Z = 1 (and other Z), the southwest corner of allowed values of x, y is square AL.

� 11.4  Which lettering scheme to use

This subsection pertains to item (iii) of Subsection 11.1

For all usages of MGRS within the WGS 84 datum and ellipsoid, the lettering scheme to use should be “AA”.

If not operating within the WGS 84 datum, the lettering scheme to use depends on the reference ellipsoid to which the

UTM  coordinates  refer.   If  the  reference  ellipsoid  is  Bessel  1841  (Ethiopia,  Asia)  (BR),  or  Bessel  1841  (Namibia)

(BN), or Clarke 1866 (CC), or Clarke 1880 (CD), or Clarke 1880 (IGN) (CG), then scheme “AL” is to be used.  For all

other ellipsoids, scheme “AA” is to be used.

� 11.5  Lettering schemes on old maps

MGRS predates the  establishment of  WGS 84 and was invented when no global  3D geodetic  datum had yet  gained

preeminence.  Consequently,  MGRS historically employed at least the two lettering schemes explained — "AA" and

"AL".  This was done to highlight a change of datum when crossing into an adjacent area on a competing datum.  (A

change in datum is usually accompanied by a change in reference ellipsoid).  A review of the inventory of U.S. and

NATO maps and charts to investigate this further is outside the scope of this document, but the following should be

mentioned as an example of the Subsection 11.4 rule:

The horizontal datum for the United States for many decades of the 20th century was the North American Datum of

1927 which uses the Clarke 1866 ellipsoid.   When an MGRS position is  specified using this datum, as may happen

with old maps of U.S. military installations, lettering scheme “AL” is used.

Also  to  be  found  are  usages  of  “AA”  and  “AL”  outside  of  the  Subsection  11.4  rule  and  letterings  compliant  with

neither  “AA”  nor  “AL”.   Edition  1  of  [11]  contains  an  advisory  worth  repeating  here:   "Users  are  cautioned  that

deviations from the combined AA-or-AL lettering schemes were made in the past. These deviations were an attempt

to provide unique grid references within a complicated and disparate world-wide mapping system."  

The foregoing has implications for the software developer.  The Subsection 11.4 rule should be segregated and made

into a separate table with room for amendment and not combined with the logic of Subsections 11.2 and 11.3.   Fur-

ther,  if  new lettering schemes are discovered and software support  for  them is  wanted,  the logic for them should be

patterned after  Subsections 11.2 and 11.3.   For  example,  lettering scheme “AF” is  built  on the pattern of  “AA” and

“AL”.

� 11.6  Precision and digits

Let x, y be the UTM coordinates to be converted to an MGRS string.  The rules for MGRS provide a choice of six

levels of precision.  With each level of precision, there is a fixed number of digits for the easting and the same number

of digits for the northing.  See items (iv) and (v) of Subsection 11.1.
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Let x, y be the UTM coordinates to be converted to an MGRS string.  The rules for MGRS provide a choice of six

levels of precision.  With each level of precision, there is a fixed number of digits for the easting and the same number

of digits for the northing.  See items (iv) and (v) of Subsection 11.1.

Precision no. of digits

 (meters)      ( n )

       1        5

      10        4

     100        3

    1000        2

   10,000        1

  100,000        0     

Let  n  be  the  number  of  easting  digits  to  be  displayed in  the  MGRS string.   For  n = 0,  there  are  no  digits  to  be  dis-

played.  For n > 0, the easting digits are those of the number Floor Mod x, 105105- n  and the northing digits are

those of the number Floor Mod y, 105105- n .   The number 105- n  is the precision in meters corresponding to  n.

This completes the specification of items (iv) and (v) of Subsection 11.1.

� 11.7  Latitude band letter

The  MGRS  latitude  band  letter,  i.e.  item  (ii)  of  Subsection  11.1,  is  the  conversion  of  Floor  Φ  8 deg   to  a  letter

according to the following table:

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C C D E F G H J K L M N P Q R S T U V W X X
 

where latitude Φ lies in the interval -88 deg £ Φ < 88 deg.  The letters “C” and “X” occur twice as shown.

Consequently, the UTM to MGRS conversion requires also the UTM to Lon./Lat. conversion.  This means executing

the inverse mapping equations for transverse Mercator (Eq. 5.16) with, of course, the parameters for UTM (Subsection

7.1).  This is necessary to obtain the latitude Φ required above.

� 11.8  Latitude band letter example

Here is an example of the UTM portion of MGRS and the nuisance caused by the latitude band letter.  The example

uses the WGS 84 ellipsoid.

1 3 V F C 4 9 6 6 1 0 8 6 7 9 A point in western Canada near 102.6°W, 56°N

          . . . 1 0 . . . . . Move 10 m in the easting direction

1 3 V F C 4 9 6 7 1 0 8 6 7 9 New position after the move, so it would seem,

    but the latitude band letter “V” is not correct

1 3 U F C 4 9 6 7 1 0 8 6 7 9 Correct new position

UTM is independent of longitude/latitude when doing displacement calculations of the above kind.  This is not true

for MGRS as the above example shows.  Application-software developers should be aware of this and do all  plane-

geometry calculations in UTM and only use MGRS to convert the inputs or outputs, as needed.

� 11.9  Character string for the UPS portion of MGRS

For the UPS portion of MGRS, a sequence of letters and digits is specified from left to right as:

(i) Three letters — two easting letters and one northing letter — representing a square that is 100 000 meters

on a side

(ii) Zero to five decimal digits, representing the UTM easting to desired precision

(iii) The same number of decimal digits, representing the UTM northing to the same precision

To be strictly correct and to facilitate machine-to-machine communication, an MGRS string is to have no intermediate

spaces or punctuation marks and all the letters are to be capitals.  Letters “I” and “O” are never used.

� 11.10  Lettering scheme “UPS north”

This subsection specifies the scheme for picking two letters to represent the 100 000 meter square for the UPS portion

of MGRS, i.e. item (i) of Subsection 11.9, when the UPS zone is north, i.e. Z = 1.
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Let Z = 1 be the UPS zone, and let x, y be the UPS easting and northing (in meters) of a point within these limits:

1 300 000 £ x < 2 700 000

1 300 000 £ y < 2 700 000

The  100 000  meter  square  identifier  consists  of  two  easting  letters  followed  by  a  northing  letter.   The  two  easting

letters are the conversion of Floorx 100 000 according to the following table:

13 14 15 16 17 18 19 20 21 22 23 24 25 26

YR YS YT YU YX YY YZ ZA ZB ZC ZF ZG ZH ZJ
 

Note that YU is followed on the right by YX (skipping YV and YW) and ZC is followed on the right by ZF (skipping

ZD and ZE).

The northing letter is the conversion of Floory 100 000 according to the following table:

13 14 15 16 17 18 19 20 21 22 23 24 25 26

A B C D E F G H J K L M N P
 

Notice that the letters “I” and “O” are deliberately omitted from the above tables.

   

� 11.11  Lettering scheme “UPS south”

This subsection specifies the scheme for picking two letters to represent the 100 000 meter square for the UPS portion

of MGRS, i.e. item (i) of Subsection 11.9, when the UPS zone is south, i.e. Z = -1.

Let Z = -1 be the UPS zone, and let x, y be the UPS easting and northing (in meters) of a point within these limits:

800 000 £ x < 3 200 000

800 000 £ y < 3 200 000

The  100 000  meter  square  identifier  consists  of  two  easting  letters  followed  by  a  northing  letter.   The  two  easting

letters are the conversion of Floor x 100 000 according to the following table (shown in two pieces):

8 9 10 11 12 13 14 15 16 17 18 19

AJ AK AL AP AQ AR AS AT AU AX AY AZ
 

20 21 22 23 24 25 26 27 28 29 30 31

BA BB BC BF BG BH BJ BK BL BP BQ BR
 

Note that AL is followed on the right by AP (skipping AM and AN) and that other skips occur.  The northing letter is

the conversion of Floor y 100 000 according to the following table (shown in two pieces):

8 9 10 11 12 13 14 15 16 17 18 19

A B C D E F G H J K L M
 

20 21 22 23 24 25 26 27 28 29 30 31

N P Q R S T U V W X Y Z
 

Notice that the letters “I” and “O” are deliberately omitted from the above tables.

� 11.12  Precision and digits

Let  x, y  be  the  UPS coordinates to  be converted to  an MGRS string.   There is  a  choice of  six  levels  of  precision.

The rules about this are the same as for the UTM portion of MGRS in Subsection 11.6 and are repeated here.  With

each level of precision, there is a fixed number of digits for the easting and the same number of digits for the northing

as follows:

Precision no. of digits

 (meters)      ( n )

       1        5

      10        4

     100        3

    1000        2

   10,000        1

  100,000        0     
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Precision no. of digits

 (meters)      ( n )

       1        5

      10        4

     100        3

    1000        2

   10,000        1

  100,000        0     

Let  n  be  the  number  of  easting  digits  to  be  displayed in  the  MGRS string.   For  n = 0,  there  are  no  digits  to  be  dis-

played.  For n > 0, the easting digits are those of the number Floor Mod x, 105105- n  and the northing digits are

those of the number Floor Mod y, 105105- n .   The number 105- n  is the precision in meters corresponding to  n.

This completes the specification of items (ii) and (iii) of Subsection 11.9.

This subsection completes the specification of the UPS portion of MGRS.

� 11.13  Conversion of MGRS to UTM or UPS

If the first character of an MGRS string is a digit,  the string belongs to the UTM portion of MGRS and can be con-

verted to UTM coordinates.  Otherwise the string belongs to the UPS portion of MGRS and can be converted to UPS

coordinates.  In all cases, the easting x is obtained by:

x = 100 000 xletter + 105-n xdigits

where xletter is the number listed in the appropriate lettering-scheme table for the given easting letter(s) and xdigits is the

number defined by the n given easting digits, assuming some easting digits were given.  If no easting (northing) digits

are given, then xdigits = 0.

For the UPS portion of MGRS, the northing y is obtained by:

y = 100 000 yletter + 105-n ydigits

where yletter is the number listed in the appropriate lettering-scheme table for the given northing letter and ydigits is the

number  defined  by  the  n  given  northing  digits.   If  no  easting  (northing)  digits  are  given,  then  ydigits = 0.   This  con-

cludes the MGRS to UPS conversion.

If the first character of the MGRS string is a digit, the string belongs to the UTM portion of MGRS, as has been said.

The UTM Zone number Z is the leading digit(s) of the MGRS string, taken as a positive number if the MGRS latitude

band letter is in the range N-X and taken as a negative number if the latitude band letter is in the range C-M.

Obtaining the UTM northing y requires several steps.  A preliminary northing yprelim is obtained by:

yprelim = 100 000 yletter + 105-n ydigits

where, like above,  yletter is the number listed in the appropriate lettering-scheme table for the given northing letter and

ydigits  is  the number defined by the n  given northing digits.   If  no easting (northing) digits are given, then ydigits = 0.

Then the northing y is calculated:

y = 2 000 000 yband + yprelim

where yband is the choice among 0,1,2,3 and 4 that satisfies the requirement that converting the obtained UTM coordi-

nates x, y  back to Λ, Φ  yields a latitude Φ  lying in the given MGRS latitude band (see Subsection 11.7).  To help

choose  among 0,1,2,3  and  4,  a  trial  value  may  be  obtained from row 2  of  the  following table.   The  first  row is  the

MGRS latitude  band  letter;  the  other  rows  give  the  possible  values  of  yband.   For  some columns  (e.g.  column “E”),

there is only one possibility and the trial value is the actual value.  In such cases, a UTM-to-Lon/Lat calculation is not

needed.

C D E F G H J K L M N P Q R S T U V W X

1 1 1 2 2 3 3 4 4 4 0 0 0 1 1 2 2 3 3 3

0 0 1 2 3 1 2 3 4 4

 

   

� 11.14  MGRS to UTM conversion example

An example of a MGRS-to-UTM conversion is now given.  Consider the MGRS string 06STB1980012345 for a point

in the central Pacific referred to the WGS 84 ellipsoid.  Picking it  apart,  in order, gives UTM absolute zone 06,

latitude band S, easting letter T, northing letter B, easting digits 19800, and northing digits 12345.  The UTM zone is

Z = 6,  (rather  than  Z = -6),  because  S  falls  in  the  sequence  N–X.   The  easting  is  considered  first.   Since

Mod Z, 3 = Mod 6, 3 = 0, entering the Section 11.2 tables with T yields xletter = 2.  Note that the precision is one

meter using n = 5 digits.  Combining xletter = 2 with xdigits = 19 800 gives  x = 219 800 meters for the UTM easting.

The northing is considered next.  Since Z = 6 is even, entering the Section 11.2 tables with B  yields yletter = 16.

Combining yletter = 16 with  ydigits = 12 345 gives   yprelim = 1 612 345 meters.   The  Section  11.13  table  under  S  is

consulted to obtain the possible values yband = 1, 2.  They generate the possibilities y1 = 3 612 345 or y2 = 5 612 345

for the UTM northing y.  The coordinates x, y1 convert to Λ = -149.98596 deg and Φ = 32.61320 deg.  The Section

11.7 table is entered with the calculation Floor  Φ  8 deg  = 4 to re-obtain S as the MGRS latitude band letter.  This

decides in favor of y1 over y2.  Therefore, the UTM coordinates are x = 219 800 and y = 3 612 345 in zone Z = 6.
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decides in favor of y1 over y2.  Therefore, the UTM coordinates are x = 219 800 and y = 3 612 345 in zone Z = 6.

� 11.15  Legacy tables for the lettering schemes

The methods of this Section to find the easting/northing letters given the numerical x, y coordinates employed the

one-dimensional tables found in Sections 11.2, 11.3, 11.10, and 11.11.  This provided succinct logic for the software

developer.  The equivalent and familiar two dimensional tables for lettering schemes “AA” and “AL” are provided

(newly printed) on the next two pages.  For the two dimensional version of the UPS-related lettering scheme tables,

see the plots in Section 15.
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12.  Topics in MGRS

The agenda of this document is the programming logic needed by the software developer.  For MGRS, this is covered

in Section 11 — in one sense, covered completely.  But it is prudent to take notice of some related issues, and this is

done here.

� 12.1  Formal definition of MGRS

Section 11 adopts a formal point of view, i.e. MGRS is merely a respelling of UTM or UPS coordinates truncated to

the  desired  precision.   If  the  administrative  rules  (Subsections  7.4  or  10.4)  were  in  effect  when  the  UTM  or  UPS

coordinates were produced, they remain in effect when these coordinates are converted to MGRS.  If the UTM or UPS

coordinates were produced outside the administrative rules, they can yet be converted to MGRS provided they satisfy

the  inequalities  for  x  and  y  given  for  the  relevant  lettering  scheme,  i.e.  the  inequalities  in  Subsections  11.2,  11.3

(implied), 11.10 and 11.11.  

If the UTM or UPS coordinates x, y are both multiples of the desired MGRS precision, 105- n (see Subsection 11.6),

then the double conversion UTM ® MGRS ® UTM yields the original coordinates x, y exactly.  With no change in

the desired precision, the double conversion MGRS ® UTM ® MGRS yields the original MGRS string.  Likewise for

UPS in place of UTM.  All this is true when keeping to the principles of Section 11.  

� 12.2  Administrative rules

The intended usage of MGRS is meant to comply with the administrative rules of Subsections 7.4 and 10.4.  

At some level of the software hierarchy, the MGRS conversion routines should be written in accordance with Section

11.  This will allow the crossing of an administrative-rule boundary when necessary or when convenient and allowed.

At a higher level, the administrative rules may be enforced in software.  The goal is to keep UTM/UPS synchronized

with MGRS.  In any situation, the administrative rules should be applied to both or neither; they should not be applied

to only one.

� 12.3  Rounding v. truncating

The intended usage of UTM and UPS coordinates for the calculating or recording of positions complies with the usual

rounding rules of science and engineering.  When a precise coordinate, e.g. x = 512 378 m, is to be converted to a less

precise coordinate, e.g. x = 512 380 m or x = 512 400 m,  the operation is rounding, not dropping of digits (truncating).

For UTM (and UPS) conversions to MGRS, the operation is truncating, not rounding (see Section 11). Continuing the

above example, x = 512 378 m becomes x = 512 370 m (easting digits 1237) or x = 512 300 m (easting digits 123).

For  the  reverse  conversion,  i.e.  MGRS  to  UTM  or  MGRS  to  UPS,  if  the  requirement  is  for  the  best  UTM  or  UPS

position rather than for a defined area’s bottom-left corner (discussed next), one-half the precision should be added to

the result of the Section 11 conversion.  For example, if the given easting digits are 1237, the meaning of those digits

is a 10 meter interval from (say) x = 512 370 m to x = 512 380 m and the appropriate value of x would be x = 512 375

m.

� 12.4  Point v. area

MGRS is also an area identification scheme.  If there are n  easting digits (with the same number of northing digits),

the MGRS string defines a square in the UTM or UPS plane whose side is 105- n meters and whose bottom left corner

is  the UTM or  UPS equivalent  of  the MGRS string (using Section 11 for  the conversion).   For  non-polar  areas,  the

bottom left corner is the southwest corner.

The administrative rules  are  amended to  allow some MGRS strings as  area identifiers  that  would not  be allowed as

point identifiers.  Point vice area is an important distinction.  Here is an example:  The administrative limits for UTM

zone (-53)  are  132 deg £ Λ < 138 deg.   Point  53ELR2520014100 lies  east  of  132°E and is  compliant.   It  belongs to

area  53ELR2514,  whose  southwest  corner  is  point  53ELR2514  or  point  53ELR2500014000  (to  use  a  consistent

precision for points, in this example). Almost all of area 53ELR2514 lies east of 132°E.  But the corner point 53EL-

R2500014000  lies  west  of  132°E  and  is  therefore  non-compliant.   (See  the  figure  in  this  subsection).   Zone  (-53)

should  not  be  used  for  this  point.   Its  administratively  correct  specification  is  point  52EFA7482914007 in  the  next

zone westward, i.e. zone (-52).   But no good will come of this conversion.  String 52EFA7482914007 has the wrong

precision  to  identify  the  desired  area  (1000-meter  square)  and  truncating  it  to  52EFA7414  (the  desired  precision)

defines a different area.  (This is an example of a general principle:  it is impossible to simultaneously specify an area

of  the  earth  by  UTM zone  (-52)  grid-lines  and  by  UTM zone  (-53)  grid-lines,  even  if  the  administrative  rules  are

completely  abandoned).   Therefore  the  administrative  rules  are  amended  to  say  that  although  “53ELR2514”  is  not

allowed  as  the  specification  of  a  point,  area  53ELR2514  shall  mean  the  portion  of  this  1000-meter  square  east  of

132°E.
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� 12.5  Latitude band letter — efficiency — northern hemisphere

Because  various  characteristics  of  MGRS  are  unhelpful  to  analytical  work  (see  Subsection  11.8),  this  document

suggests (but does not mandate) the following division of labor between MGRS and UTM/UPS when both are under

consideration.  UTM/UPS should be be used for calculations, analytical work, and storage & retrieval of geographic

information; MGRS should be limited to notations on maps and charts,  displays on end-user devices and person-to-

person or person-to-machine communication.  Therefore, there would not seem to be a great need for efficiency in the

conversion  algorithms  between  UTM/UPS  and  MGRS,  as  large  data  sets  that  would  consume  computer  resources

should already be stored in UTM or UPS coordinates.  

The  above  notwithstanding,  there  could  be  occasions  where  these  conversion  algorithms  need  to  be  efficient.   The

UPS-to-MGRS algorithm and its  inverse present  no issues.   The UTM-to-MGRS algorithm and it  inverse,  however,

could be improved for efficiency.  The issue is the latitude band letter.

For the UTM-to-MGRS conversion, rather than always execute the UTM-to-Lon./Lat. algorithm to obtain the latitude

and thus the latitude band letter, the software should invoke the following table for the northern hemisphere.  For each

parallel  circle,  the table provides two staircase-like functions that  envelope the parallel  — one on its  north side;  the

other  on  its  south  side.   This  allows  a  table  look-up  to  complete  the  latitude  band  letter  determination  for  the  vast

majority of cases.  All x and y values in the table are kilometers on the UTM plane.  For the MGRS-to-UTM conver-

sion, this table obviates the need for an execution of the UTM-to-Lon./Lat. algorithm.  (See the examples in Subsec-

tion 12.7).  The table is valid for any reference ellipsoid listed in Section 4.  
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              y-value for   y-value for   y-value for   y-value for

       Lat.   500  x  600   600  x  700   700  x  800   800  x  900

      (deg)      (  km   )         (  km   )          (   km   )          (   km   )    

                                 Latitude band X

        72       7992           7999         8011           8029

      -------------------------------------------------------------

        72       7988           7990         7997           8009

                                 Latitude band W

        64       7099           7104         7112           7123

      -------------------------------------------------------------

        64       7096           7097         7102           7110

                                 Latitude band V

        56       6208           6211         6217           6225

      -------------------------------------------------------------

        56       6205           6206         6210           6215

                                 Latitude band U

        48       5318           5320         5325           5331

      -------------------------------------------------------------

        48       5315           5316         5319           5323

                                 Latitude band T

        40       4429           4431         4434           4439

      -------------------------------------------------------------

        40       4427           4427         4429           4433

                                 Latitude band S

        32       3541           3543         3545           3549

      -------------------------------------------------------------

        32       3540           3540         3542           3544

                                 Latitude band R

        24       2655           2656         2658           2660

      -------------------------------------------------------------

        24       2653           2654         2655           2657

                                 Latitude band Q

        16       1770           1770         1771           1773

      -------------------------------------------------------------

        16       1768           1768         1769           1770

                                 Latitude band P

         8        885            885          886            887

      -------------------------------------------------------------

         8        884            884          884            885

                                 Latitude band N

         0          0              0            0              0

      -------------------------------------------------------------

(A subroutine to convert Lon./Lat. to MGRS by combining the guidance in several sections of this document will not

need efficiency improvements like the above.  The latitude is a given input item; the latitude band letter is easily

determined by Subsection 11.7).

� 12.6  Latitude band letter — efficiency — symmetry of tables

On the other side of the line x = 500 000, symmetry is applied as if the headings of the tables in Subsections 12.5 and

12.8 were:

              y-value for   y-value for   y-value for   y-value for

       Lat.   400  x  500   300  x  400   200  x  300   100  x  200

      (deg)      (  km   )         (  km   )          (   km   )          (   km   )    

      

� 12.7  Latitude band letter — efficiency — examples

To convert x, y = 705 000, 1 765 123, use the column 700 km £ x < 800 km and find that  y = 1 765 123 is safely in

band P because it is south of y = 1769 km and north of y = 886 km.  

To  convert  x, y = 705 000, 1 769 123,  which  is  the  point  displaced  4000  meters  more  in  northing,  the  UTM-to-

Lon./Lat. algorithm will have to be executed because  y = 1 769 123  lies between  y = 1769 km and y = 1771 km.

  

Let 31SFR1500042887 be given as an MGRS string for an ellipsoid that uses lettering scheme “AA”.  This example

finds the corresponding UTM coordinates.  The UTM zone is Z = +31.  The easting letter is “F” which by the tables

of Subsection 11.2 represents 6, i.e. 6 ´ 105 = 600 000 meters.  Add the easting digits to get x = 615 000.  The northing

letter is “R”, which by the same tables of Subsection 11.2 represents 15, i.e.  15 ´ 105meters, which is understood to

stand  for  1 500 000 + 2 000 000 k  meters  for  k = 0, 1, 2, 3, or 4  (to  be  determined).   Add  the  northing  digits  to  get

y = 1 542 887 + 2 000 000 k.   In  other  words,  the  candidates  for  y  are  1 542 887,  3 542 887,  5 542 887,  7 542 887  and

9 542 887, which ambiguity is to be resolved by the latitude band letter “S”.  Consulting the table in Subsection 12.5

under  column  600 km £ x < 700 km,  we  see  that  y = 3 542 887  lies  inside  the  expanded  limits  of  band  S,  i.e.

y = 3540 km to y = 4431 km.  Therefore,  y = 3 542 887.
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To convert x, y = 705 000, 1 765 123, use the column 700 km £ x < 800 km and find that  y = 1 765 123 is safely in

band P because it is south of y = 1769 km and north of y = 886 km.  

To  convert  x, y = 705 000, 1 769 123,  which  is  the  point  displaced  4000  meters  more  in  northing,  the  UTM-to-

Lon./Lat. algorithm will have to be executed because  y = 1 769 123  lies between  y = 1769 km and y = 1771 km.

  

Let 31SFR1500042887 be given as an MGRS string for an ellipsoid that uses lettering scheme “AA”.  This example

finds the corresponding UTM coordinates.  The UTM zone is Z = +31.  The easting letter is “F” which by the tables

of Subsection 11.2 represents 6, i.e. 6 ´ 105 = 600 000 meters.  Add the easting digits to get x = 615 000.  The northing

letter is “R”, which by the same tables of Subsection 11.2 represents 15, i.e.  15 ´ 105meters, which is understood to

stand  for  1 500 000 + 2 000 000 k  meters  for  k = 0, 1, 2, 3, or 4  (to  be  determined).   Add  the  northing  digits  to  get

y = 1 542 887 + 2 000 000 k.   In  other  words,  the  candidates  for  y  are  1 542 887,  3 542 887,  5 542 887,  7 542 887  and

9 542 887, which ambiguity is to be resolved by the latitude band letter “S”.  Consulting the table in Subsection 12.5

under  column  600 km £ x < 700 km,  we  see  that  y = 3 542 887  lies  inside  the  expanded  limits  of  band  S,  i.e.

y = 3540 km to y = 4431 km.  Therefore,  y = 3 542 887.

� 12.8  Latitude band letter — efficiency — southern hemisphere

The table for the southern hemisphere follows.  It is valid for any reference ellipsoid listed in Section 4.

              y-value for   y-value for   y-value for   y-value for

       Lat.   500  x  600   600  x  700   700  x  800   800  x  900

      (deg)      (  km   )         (  km   )          (   km   )          (   km   )    

        0        10000         10000         10000         10000

                                 Latitude band M

       -8         9116          9116          9116          9115

      -------------------------------------------------------------

       -8         9115          9115          9114          9113

                                 Latitude band L

      -16         8232          8232          8231          8230

      -------------------------------------------------------------

      -16         8230          8230          8229          8227

                                 Latitude band K

      -24         7347          7346          7345          7343

      -------------------------------------------------------------

      -24         7345          7344          7342          7340

                                 Latitude band J

      -32         6460          6460          6458          6456

      -------------------------------------------------------------

      -32         6459          6457          6455          6451

                                 Latitude band H

      -40         5573          5573          5571          5567

      -------------------------------------------------------------

      -40         5571          5569          5566          5561

                                 Latitude band G

      -48         4685          4684          4681          4677

      -------------------------------------------------------------

      -48         4682          4680          4675          4669

                                 Latitude band F

      -56         3795          3794          3790          3785

      -------------------------------------------------------------

      -56         3792          3789          3783          3775

                                 Latitude band E

      -64         2904          2903          2898          2890

      -------------------------------------------------------------

      -64         2901          2896          2888          2877

                                 Latitude band D

      -72         2012          2010          2003          1991

      -------------------------------------------------------------

      -72         2008          2001          1989          1971

                                 Latitude band C         

      -------------------------------------------------------------

         

� 12.9  Latitude band letter — leniency

Many  software  programs  allow  some  leniency  in  the  latitude  band  letter  during  the  MGRS-to-UTM  conversion

process.  The example of Subsection 11.8 is a case in point.  In that example, the string 13VFC4967108679 is invalid

by the rules of Section 11,  and would have to be rejected and not converted.  (An error message would be helpful).

Opposed  to  this,  both  13UFC4967108679  (valid)  and  13VFC4967108679  (invalid)  convert  to  Z = +13,

x, y = 649 671, 6 208 679 by the application of the latitude-band-letter efficiency table of Subsection 12.5 (and see

Sub-subsection  12.7.3).   So,  it  would  seem that  the  error  in  the  Latitude  band  letter  is  recoverable  in  this  case  and

maybe shouldn’t be called an error.  Again, this leniency is outside the definition of MGRS in Section 11.
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Many  software  programs  allow  some  leniency  in  the  latitude  band  letter  during  the  MGRS-to-UTM  conversion

process.  The example of Subsection 11.8 is a case in point.  In that example, the string 13VFC4967108679 is invalid

by the rules of Section 11,  and would have to be rejected and not converted.  (An error message would be helpful).

Opposed  to  this,  both  13UFC4967108679  (valid)  and  13VFC4967108679  (invalid)  convert  to  Z = +13,

x, y = 649 671, 6 208 679 by the application of the latitude-band-letter efficiency table of Subsection 12.5 (and see

Sub-subsection  12.7.3).   So,  it  would  seem that  the  error  in  the  Latitude  band  letter  is  recoverable  in  this  case  and

maybe shouldn’t be called an error.  Again, this leniency is outside the definition of MGRS in Section 11.

Of the choice to be lenient or not, many system developers adopt the more generous view and apply it to cases more

aggressively  in  the  wrong  latitude  band  than  the  above  example.   If  this  practice  is  to  be  allowed,  this  document

should offer some guidance.  The purpose of the latitude band letter — the only purpose with respect to the algorithms

at issue — is to resolve the 2 000 000 k  meters ambiguity in the northing where k is one of the integers 0, 1, 2, 3, or 4.

The design of a leniency rule has to include the requirement that a candidate MGRS string that is off by one latitude

band letter but otherwise valid converts to the intended UTM coordinates.

� 12.10  Latitude band letter — leniency rule

For the UTM to MGRS conversion, there is no leniency — the latitude band letter is to be computed correctly by the

foregoing principles.   For the MGRS to UTM conversion, the following leniency rule is  to be applied to decipher a

candidate MGRS string:  Give each “latitude band” (hereafter, bloated latitude band) a much larger area.  Refer to the

tables in Subsections 12.5 and 12.8.  For each latitude band other than C and X, start with the pair of staircase func-

tions immediately above and below it.  Modify these to create new limits for the band.  Modify the y-values to move

the northern limit of each band another 400 000 meters further north and to move the southern limit 400 000 meters

further south.  For latitude bands C and X, expand 200 000 meters in the direction toward the Equator.  Then if none

of the 5 choices for value of y (see above, where k equals 0,1,2,3 or 4) falls into the bloated latitude band correspond-

ing to the given letter, the candidate MGRS string is invalid and cannot be converted.

The above leniency rule is quite lax, while yet retaining the ability to resolve the 2 000 000 k  meters ambiguity in the

northings.  For quality assurance of imported geographic data, analysts may devise and perform more stringent tests to

filter-out candidate MGRS data for further review before acceptance.

� 12.11  MGRS–UTM hybrid

Nothing in this document prohibits DoD components and their contractors from employing a mixture of UTM and

MGRS information for displays on end-user equipment or for margin notes on printed maps, etc.    Prominent in this

category is the following MGRS–UTM hybrid:

(i) UTM zone number in absolute value

(ii) MGRS latitude band letter

(iii) UTM x-coordinate (Easting) to precision 1 meter 

(iv) UTM y-coordinate (Northing) to precision 1 meter

As an example, here is a point specified three ways:

UTM (stored internally): Zone  31, x  345009, y  6700123

MGRS: 31VCH4500900123

MGRS–UTM hybrid: 31V, 345009mE, 6700123mN

Details of the format and wording of margin notes and device displays are outside the scope of this document.  See

[11] for guidance and these remarks:  From the information-content point-of-view, the MGRS latitude band letter

belongs to MGRS, not UTM.  For greater readability the above example appends “mE” for meters east and “mN” for

meters north, as shown.  Also for readability, UTM may show “31 north” in place of “+31”, but the capital letters “N”

and “S” may not be used as abbreviations for north and south.

Here is another example.  It is 10, 000, 000 meters less in northing, and on the other side of the Equator:

UTM (stored internally): Zone  31, x  345009, y  3299877 

UTM (stored internally): Zone  31, x  345009, y  6700123

MGRS: 31JCH4500900123

MGRS–UTM hybrid: 31J, 345009mE, 6700123mN

The suffix “mN” for “meters North” is to be used for points on both sides of the Equator.  
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13.  MGRS Quick-Start

The guidance given to this point has assumed that the routines for processing MGRS are part of a larger package of

map projection and coordinate conversion software to include UTM and UPS and, more generally, transverse Merca-

tor and polar stereographic routines.    When these are available, the additional code to implement MGRS is merely a

few table look-ups (see Sections 11 and 12; note some exceptions), and MGRS is efficiently linked to UTM and UPS.

Modern positioning (e.g.  GPS technology) is in pursuit  of centimeter accuracy.  This manual’s conversions between

Lon./Lat. and UTM support such a goal but MGRS does not.  Consequently and for other reasons, the development of

transverse Mercator and UTM in this document is more extensive than needed for MGRS.  UTM is recommended for

serious analytical work with grid coordinates but some software developers might need only MGRS.  For them, this

section provides some short-cuts.  Some short cuts are for the reader; some are for the machine.

This section provides guidance for converting directly between longitude/latitude and MGRS.  Only the UTM portion

of  MGRS  is  considered.   Only  the  WGS  84  ellipsoid  is  considered.   The  administrative  rules  apply.    The  chosen

precision for MGRS will be 1 meter.  For aspects of MGRS outside this agenda, see the full treatment in Sections 11

and 12 and the earlier sections to which they refer.  Sections 1, 2, and 3 are prerequisite.

� 13.1  Given Lon./Lat. compute MGRS

The procedure to compute MGRS from longitude and latitude is given as a series of steps to be followed in the order

given.

13.1.1)   Let  LonD  and  LatD  be  the  given  longitude  and  latitude  in  decimal  degrees  of  the  point  to  be  converted.

Points north of the Equator have positive latitudes; points south have negative.  Points east of the nominal Greenwich

meridian have positive longitudes; points west have negative.

If  LatD  80  or  LatD  84,  the  point  cannot  be  converted to  the  UTM portion of  MGRS and an error  message

should be issued.

13.1.2)   The  set  of  allowed  central  meridians  in  degrees  is  the  list  177  to  177  by  increment  of  6.   Find  the

member  of  this  list  closest  to  LonD  and  call  it  CMdeg.   The  UTM  absolute  zone  number  is  calculated

absZ  CMdeg  183  6.  

13.1.3)  If LatD  56  and 0  LonD  42,  an adjustment to CMdeg  from Step 13.1.2 might be required.  (See

Subsection 7.5).  

13.1.4)  Divide LatD by 8 and discard the remainder, i.e. compute FloorLatD  8.  Enter the following table

with the result to find the latitude band letter.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C D E F G H J K L M N P Q R S T U V W X X
 

   

13.1.5)  Convert the angles in Steps 13.1.1 and 13.1.2 to radians.  In other words, compute Lon  LonD  Pi  180
and Lat  LatD  Pi  180 and CM  CMdeg  Pi  180. 

13.1.6)  Next is needed the conformal latitude Χ or, rather, its cosine and sine.  See Subsection 2.8 and use the formu-

las there.  The value to use for e, the eccentricity is e = f 2 - f   where f = 1 298.257223563.  

13.1.7)  Perform the computations of Eq. (3.8) to obtain the quantities u and v using    Lon  CM for the value of 

in those equations.  

13.1.8)  Compute cos2 v, cos4 v,  sin2 v, sin4 v,  directly or with help from Eq. (3.10)

13.1.9)  Compute cosh2 u, cosh4 u,  sinh2 u, sinh4 u,  directly or with help from Eq. (3.12)
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13.1.9)  Compute cosh2 u, cosh4 u,  sinh2 u, sinh4 u,  directly or with help from Eq. (3.12)

13.1.10)   Perform  the  computations  of  Eq.  (3.7)  in  the  following  abbreviated  way.   (This  is  possible  because  the

computational accuracy required in this situation is merely one meter.)  

x = R4  u + a2 sinh2 u cos2 v + a4 sinh4 u cos4 v 
y = R4  v + a2 cosh2 u sin2 v + a4 cosh4 u sin4 v 

13.1.11)  Compute the UTM easting and northing as follows, where yeq is 0 if Lat  0 and  is 10 000 000 otherwise:

xutm = 0.9996 x + 500 000 truncated to 1 meter

yutm = 0.9996 y + yeq truncated to 1 meter

13.1.12)  Apply lettering scheme “AA” (see Subsection 11.2) to the numbers xutm, yutm found in Step 13.1.11 with

Z there equal to absZ here.

13.1.13)   The  MGRS string  consists  of  the  absolute  zone  number  absZ  from Step  13.1.2,  followed  by  the  latitude

band letter  from Step 13.1.4,  followed by the easting-letter obtained in Step 13.1.12,  followed by the northing letter

obtained also in Step 13.1.12, followed the 5 least significant digits of xutm obtained in Step 13.1.11, followed finally

by the 5 least significant digits of yutm obtained also in Step 13.1.11.  

� 13.2  Given MGRS, compute Lon./Lat.

The procedure to compute the longitude and latitude from MGRS is given as a series of steps to be followed in the

order given.

13.2.1)  Check that the given MGRS string consists of 1 or 2 digits (the UTM absolute zone number absZ) followed

by a letter in the range C-X  (the latitude band letter)  followed by another letter (easting-letter) followed by another

letter  (northing-letter)  followed  by  5  digits  (easting-digits  xdigits)  followed  finally  by  5  more  digits  (northing-digits

ydigits).  None of the letters may be “I” or “O”.  Other checks will arise in what follows.

13.2.2)   The  central  meridian  in  degrees  is  computed  CMdeg  183  6  absZ.   Its  radian  equivalent  is

CM  CMdeg  Pi  180.  

13.2.3)   Apply  lettering scheme “AA” (see  Subsection 11.2)  in  reverse  to  the  easting-letter  and northing-letter  from

Step 13.2.1 to obtain their numerical equivalents xletter  and yletter.   Successful table look-ups should yield answers in

the ranges 1 £ xletter £ 8 and 0 £ yletter £ 19.  Take Z there to be equal to absZ here. 

 

13.2.4)  Combine the above pieces of information according to the following equations to obtain the UTM easting xutm

and the UTM northing yutm. 

xutm = 100 000 xletter + xdigits

yprelim = 100 000 yletter + ydigits

yutm = 2 000 000 yband + yprelim

where yband is one of the numbers 0,1,2,3 or 4 to be determined.  (The five candidates for yband yield five candidates

for yutm.)

13.2.5)  Determine yband by one of these two methods.  (i) Enter the latitude band efficiency tables of Subsections 12.5

and 12.8 with xutm and the latitude band letter and the 5 candidate values of yutm to see which one fits.  Or, (ii) consult

the following table (from Subsection 11.13) to obtain the one or two possible values of yband  , compute yutm for each

value and apply the remaining steps of this subsection to each  yutm candidate to see which latitude (final answer) fits

the given latitude band.

C D E F G H J K L M N P Q R S T U V W X

1 1 1 2 2 3 3 4 4 4 0 0 0 1 1 2 2 3 3 3

0 0 1 2 3 1 2 3 4 4
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C D E F G H J K L M N P Q R S T U V W X

1 1 1 2 2 3 3 4 4 4 0 0 0 1 1 2 2 3 3 3

0 0 1 2 3 1 2 3 4 4

 

   

13.2.6)  Compute the transverse Mercator coordinates x and y as follows, where yeq  is 10 000 000 if the latitude band

letter is among C-M and is 0 if it is among N-X:

x = xutm - 500 000  0.9996
y = yutm - yeq 0.9996

13.2.7)  Apply the formulas and logic of Subsection 3.5 to the values for x, y from Step 13.2.6.   The formulas for u

and v may be shortened as follows:

u =
x

R4

+ b2 sinh
2 x

R4

cos
2 y

R4

+ b4 sinh
4 x

R4

cos
4 y

R4

v =
y

R4

+ b2 cosh
2 x

R4

sin
2 y

R4

+ b4 cosh
4 x

R4

sin
4 y

R4
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14.  United States National Grid

This section explains the United States National Grid (USNG).  It is included in this document because it is almost the

same as MGRS.

� 14.1  Definition of USNG

Like  MGRS,  the  United  States  National  Grid  (USNG)  [5]  is  built  on  UTM  coordinates  (eastings  and  northings),  a

lettering scheme for multiples of 100 000 meters,  and latitude bands.  It  adopted almost all  of the rules of the UTM

portion of MGRS given in Section 11.  The sole exception concerns the choice between lettering schemes “AA” and

“AL” in a particular circumstance.  The following table tells which scheme is used for which ellipsoid/datum:

Ellipsoid MGRS USNG

GRS 80 ellipsoid (used by the NAD 83 datum)        AA   AA

Clark 1866 ellipsoid (used by the NAD 27 datum)    AL   AA

For NAD 83, the MGRS and USNG systems are the same.  For NAD 27, they are not.

� 14.2  USNG example

It is a goal of the U.S. federal government to convert all the land maps of the U.S. from NAD 27 to NAD 83.  When

that happens, USNG will be identical to MGRS in usage because NAD 27 will be obsolete.  In the meantime, a point

in Nevada at 117°W, 39°N (NAD 27) has these competing representations, differing at the northing letter.  Note “P” v.

“D”.

MGRS: 11SNP0000016568   (NAD 27)

USNG: 11SND0000016568   (NAD 27)

         ^
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15.  Diagrams for UTM, UPS and MGRS

The following pages are some plots that illustrate principles in this document.  The depictions are informative for this

purpose only.  For guidance on the portrayal of grids and graticules on DoD standard products, see [11].

Figure Description

Figure 1 Overview of UTM plane

    (a) eastings and northings if zone Z > 0

    (b) eastings and northings if zone Z < 0

    (c) relation to parallels

    (d) MGRS representable portion

    (e) MGRS latitude bands

    (f)  meridians at ±3°

Figure 2 UTM plane — north zones — 8400 kmN to 9800 kmN

Figure 3 UTM plane — north zones — 7000 kmN to 8400 kmN

Figure 4 UTM plane — north zones — 5600 kmN to 7000 kmN

Figure 5 UTM plane — north zones — 4200 kmN to 5600 kmN

Figure 6 UTM plane — north zones — 2800 kmN to 4200 kmN

Figure 7 UTM plane — north zones — 1400 kmN to 2800 kmN

Figure 8 UTM plane — north zones — 0 kmN to 1400 kmN

Figure 9 UTM plane — south zones — 8600 kmN to 10000 kmN

Figure 10 UTM plane — south zones — 7200 kmN to 8600 kmN

Figure 11 UTM plane — south zones — 5800 kmN to 7200 kmN

Figure 12 UTM plane — south zones — 4400 kmN to 5800 kmN

Figure 13 UTM plane — south zones — 3000 kmN to 4400 kmN

Figure 14 UTM plane — south zones — 1600 kmN to 3000 kmN

Figure 15 UTM plane — south zones —   200 kmN to 1600 kmN

Figure 16 UPS plane — north zone —  x < 2000 kmE, y > 2000 kmN 

Figure 17 UPS plane — north zone —  x > 2000 kmE, y > 2000 kmN 

Figure 18 UPS plane — north zone —  x < 2000 kmE, y < 2000 kmN 

Figure 19 UPS plane — north zone —  x > 2000 kmE, y < 2000 kmN 

Figure 20 UPS plane — south zone —  x < 2000 kmE, y > 2000 kmN 

Figure 21 UPS plane — south zone —  x > 2000 kmE, y > 2000 kmN 

Figure 22 UPS plane — south zone —  x < 2000 kmE, y < 2000 kmN 

Figure 23 UPS plane — south zone —  x > 2000 kmE, y < 2000 kmN 
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Figure 1.  UTM plane for generic zone Z.  All eastings and northings are in kilometers.  (a) Northings if Z  0.  

(b)  Northings if Z  0. (c)  Northings in common practice with parallels every 8° and the north and south poles.
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Figure 1 (continued).  (d) Portion of the UTM plane representable in MGRS,  (e) MGRS latitude bands with their bounding parallels, 

(f)  Meridians at ±3° of the central meridian and parallels at 80°S and 84°N, which are basic to the administrative rules for UTM and MGRS.  
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Fig. 2.   UTM plane for arbitrary zone Z  0 showing grid-lines, meridians, and parallels.  All eastings and

northings are in kilometers.  Longitudes are relative to the unspecified central meridian.   The region repre-

sentable in MGRS is shaded. 
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Fig. 3.   UTM plane for arbitrary zone Z  0 showing grid-lines, meridians, and parallels.  All eastings and

northings are in kilometers.  Longitudes are relative to the unspecified central meridian.   The region repre-

sentable in MGRS is shaded.
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Fig. 4.   UTM plane for arbitrary zone Z  0 showing grid-lines, meridians, and parallels.  All eastings and

northings are in kilometers.  Longitudes are relative to the unspecified central meridian.   The region repre-

sentable in MGRS is shaded.
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Fig. 16.  UPS plane for Z  1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 17.  UPS plane for Z  1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 18.  UPS plane for Z  1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 19.  UPS plane for Z  1 (north zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 20.  UPS plane for Z  1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 21.  UPS plane for Z  1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 22.  UPS plane for Z  1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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Fig. 23.  UPS plane for Z  1 (south zone) showing grid-lines, meridians, parallels and MGRS lettering.

  All eastings and northings are in kilometers.  
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